
Tampere University MS-DSII

Image Deblurring with Neural Networks Using Fourier Optics

Sihan Shao

1 Imaging Forward Model

Based on the paraxial and Fraunhofer approximations, the Point Spread Function (PSF) can be derived
using a generalized pupil function Qλ,z(s, t). The blurred image Is,z,λ(x, y), which is captured by the
sensor, can be mathematically described as the convolution between the ideal sharp image Iz,λ(x, y)
and the PSF:

Is,z,λ(x, y) = Iz,λ(x, y) ∗ hλ,z(x, y), (1)

where ∗ represents the convolution operation. To achieve this convolution-based imaging model, we
define a generalized pupil function Qλ,z(s, t), which accounts for effects such as defocus and chro-
matic aberration. The PSF itself is obtained from the pupil function through the Fourier transform
(Fraunhofer approximation):

hλ,z(x, y) ∝
∣∣∣F{Qλ,z(s, t)| x

λzi
, y
λzi

}
∣∣∣2 (2)

where F represents the Fourier transform.

1.1 Electric field and plane wave

The code for this assignment is largely derived from the codebase I developed during my master’s thesis.
In this codebase, I first introduced an Electricfield data type to store spectral and spatial information,
along with a simple visualization method. The Electricfield class contains a 4-dimensional tensor,
where each dimension corresponds to the field components in the xy plane, the wavelength, and the
spatial profile. The built-in methods allow both phase and amplitude distributions to be visualized
for each predefined wavelength. Based on the Electricfield class, I also defined a PlaneWave class
that can be modulated by the generalized pupil function. Fig. 1 shows the code to define a plane wave
with a 7 mm diameter aperture.

1.2 Generalized Pupil function

To achieve this functionality for this imaging model, I implemented the class named Generalized-
Pupil. This GeneralizedPupil class consists of several methods that together form the imaging
forward model. These methods are designed to compute the defocus, apply aberrations, calculate the
PSF, and visualize the results.

1.2.1 Constructor Method: init

The constructor initializes the optical system parameters, including the reference focal length, refractive
index, minimum and maximum object-to-lens distances, lens-to-sensor distance, and aperture diameter.

1

sihan.shao@aalto.fi

(a) (b)

Figure 1: Code example to generate a plane wave with 7 mm aperture and visualization method.

1

2 class GeneralizedPupil(nn.Module):

3 "Generalized Pupil Function , considering the chromatic abberation"

4 def __init__(self , ref_foclen , ref_n , zf, zs, d):

Listing 1: Constructor Method

1.2.2 calc defocus Method

This method calculates the defocus parameter ∆D based on the refractive index values provided for
different wavelengths and the object distance.

1. ns: A list of refractive indices for different wavelengths.

2. batch size: Specifies how many different object distances will be sampled.

1

2 def calc_defocus(self , ns, batch_size =1):

3 # calculate the focal lengths of corresponding R G B wavelength

4 self.foclens = torch.from_numpy(

5 self.ref_foclen * (self.ref_n - 1) / (np.array(ns) - 1)

6).view(1, -1, 1, 1)

7

8 # sample object distances

9 self.zfs = torch.from_numpy(

10 np.random.uniform(self.zf_min , self.zf_max , batch_size)

11).view(-1, 1, 1, 1)

12

13 # calculate the defocus parameter

14 self.delta_Ds = (1 / self.zfs + 1 / self.zs - 1 / self.foclens).to(self.device

)

Listing 2: A method for computing the defocusing parameters ∆D

In this method, focal lengths for different wavelengths are computed by using the reference focal length
and refractive indices.

fλ = fG ∗ (nG − 1)

(nλ − 1)
(3)

Then, random distances for the object z are sampled between zf min and zf max if a range. Finally,
the defocus parameters ∆D are calculated, which measures the discrepancy between the ideal and
actual focus due to lens aberrations and chromatic effects.

∆D = (
1

z
+

1

zi
− 1

fλ
) (4)

2

1.2.3 to aberration Method

This method applies phase aberrations due to defocus and chromatic aberration to an electric field
representing light traveling through the optical system.

1

2 def to_aberration(self , field):

3

4 wavelengths = field.wavelengths[None , :, None , None]

5 dx, dy = field.spacing [0], field.spacing [1]

6 height , width = field.height , field.width

7

8 X, Y = torch.meshgrid(torch.linspace(-dx * width / 2,

9 dx * width / 2,

10 width , dtype=dx.dtype),

11 torch.linspace(-dy * height / 2,

12 dy * height / 2,

13 height , dtype=dy.dtype),

14 indexing=’xy’)

15 R = torch.sqrt(X**2 + Y**2).to(self.device)

16

17 # apply phase aberration to the field

18 phi_lens = 1j * torch.pi / wavelengths * self.delta_Ds * R[None , None , :,

:]**2

19 aberration = field.data * torch.exp(phi_lens)

20

21 # apply aperture to the field

22 aper_lens = R < self.r

23 aberration *= aper_lens

24

25 self.aberration = ElectricField(

26 data=aberration ,

27 wavelengths=field.wavelengths ,

28 spacing = field.spacing

29)

30

31 return self.aberration

Listing 3: A method for computing the aberration phase.

After calculating the defocus parameters, the phase aberration can be computed by:

Qλ,z(s, t) = A(s, t) exp j
π

λ
∆D[s2 + t2] (5)

The phase aberrations are shown in Fig.2

3

(a)

(b)

(c)

Figure 2: The phase aberrations when object distances are (a) z=1.8m, (b) z=2.0m, and (c) z=2.2m.

1.2.4 to psf Method

This method computes the response function (PSF) of the aberration aperture based on the far-field
approximation.

hλ,z(x, y) ∝
∣∣∣F{Qλ,z(s, t)| x

λzi
, y
λzi

}
∣∣∣2 (6)

1

2 def to_psf(self , field , padding=True):

3

4 if self.aberration is None:

5 field = self.to_aberration(field)

6 else:

7 field = self.aberration

8 # padding

9 if padding:

4

10 Horg , Worg = field.height , field.width

11 Hpad , Wpad = Horg // 4, Worg // 4

12 Himg , Wimg = Horg + 2 * Hpad , Worg + 2 * Wpad

13 padded_field = pad(field.data , (Wpad , Wpad , Hpad , Hpad), mode=’constant ’,

value =0)

14

15 else:

16 Himg , Wimg = field.height , field.width

17

18 # Computational fourier optics. Chapter 5, section 5.5.

19 # obs sample interval

20 self.dx_obs = field.wavelengths * self.zs / Himg / field.spacing [0]

21 self.dy_obs = field.wavelengths * self.zs / Himg / field.spacing [1]

22

23 field_data = ifftshift(fft2(fftshift(padded_field)))

24

25

26 if padding:

27 center_crop = torchvision.transforms.CenterCrop ([Horg , Worg])

28 field_data = center_crop(field_data)

29

30 self.psfs = field_data.abs()**2 / torch.sum(field_data.abs()**2, dim=[2, 3],

keepdim=True)

31

32 return self.psfs

Listing 4: A method to compute the PSF.

Here, we normalize the PSF before the convolution, independently for each color channel, such that,∑
x,y

hλ,z(x, y) = 1 (7)

When using the FFT to compute the Fraunhofer field, the source and observation plane side lengths
are not generally the same. The observation plane side length and sample interval in terms of the
source plane parameters can be computed by:

Lobs =
λz

∆x1
, and ∆x2 =

λz

L1
(8)

we calculated the sampling interval at the observation plane to better visualize the PSF with realistic
physical size.

1.2.5 show psf Method

This method Visualizes the point spread function (PSF) for a specified wavelength. The point spread
functions for different wavelengths at various object distances are shown in Fig.3.

1.3 Generating the blurred image

To generate a blurred image dataset, we first define a MiniImagenetDataset class to load images
from the specific folder. Some examples of the sharp and blurred images are shown in Fig.4.

Then the additive Gaussian noise is added to the blurred images to model the sensor noise:

Is,z,λ(x, y) = Iz,λ(x, y) ∗ hλ,z(x, y) +N(x, y) (9)

5

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 3: The PSFs when object distances are (a-c) z=1.8m, (d-f) z=2.0m, and (g-f) z=2.2m.

2 Deblurring Neural Network

U-Net [1] is employed for deblurring in this report. The implementation can be found in *./net-
work/unet.py* in the source code. Alternative networks which are implemented in source code, such
as NAFNet [2] and Restormer [3], could also be used for this task and as comparisons. However, U-Net

6

(a) (b)

(c) (d)

Figure 4: Example of the sharp (left) and blurred images (right)

was chosen as the baseline for the following reasons:

1. U-Net is a lightweight architecture with fewer parameters compared to other networks.

2. For resource-constrained mobile devices, lightweight networks are more suitable for achieving
faster inference.

The loss function used for deblurring is the L1 loss, defined as:

7

(a)

Figure 5: TensorBoard was used to visualize the training process, including the loss values for the
training and test datasets, as well as SSIM and PSNR evaluations on the test dataset.

loss =
∑

|Isharp − Iblurred| (10)

Other loss functions, such as PSNR, SSIM, and VGG loss, were also implemented in *./utils/losses.py*
and can be combined to achieve better results [4]. However, due to time limits, only the L1 loss was
used in this work.

We train the whole model for 100 epochs with a batch size of 8 using Adam optimizer. The initial
learning rate is 0.001 with decay rates of 0.995 for each epoch. All expierments are built on the
CSC Puhti high-performance computing cluster at Finland with 4 NVIDIA Tesla V100 GPUs and
implemented by Pytorch. The total training time is 2 days. More training details, such as tensorboard
for visualization shown in Fig.5, can be found in *./train unet.py*.

2.1 Comparison of loss function

In this section, I examine the impact of the different loss functions on the performance of networks.
The employed loss functions as L1 loss and L1 loss combined with SSIM loss [4] as:

L1 = Ll1

L2 = αLl1 + (1− α)LSSIM
(11)

where α = 0.3 in my experiments.

I applied two loss functions to different neural networks, such as U-Net and Restormer, and compared
the Peak Signal-to-Noise Ratio (PSNR) and Structural Similarity Index Measure (SSIM) values on the
test dataset. Table 1 presents the impact of different loss functions on the reconstruction results for

8

Ground Truth Blurred image Deblurred image

SSIM: 0.9644
PSNR:36.59

(a)

Ground Truth Blurred image Deblurred image

SSIM: 0.9771
PSNR:40.28

(b)

Ground Truth Blurred image Deblurred image

SSIM: 0.9564
PSNR:34.56

(c)

Ground Truth Blurred image Deblurred image

SSIM: 0.9643
PSNR:35.87

(d)

Ground Truth Blurred image Deblurred image

SSIM:0.8903
PSNR:29.26

(e)

Ground Truth Blurred image Deblurred image

SSIM: 0. 8991
PSNR:30.18

(f)

Figure 6: The deblurred results for different networks are presented. The left side displays the results
reconstructed by U-Net, while the right side shows those generated by Restormer.

the Mini-Imagenet test dataset. The results indicate that incorporating SSIM into the loss function,
represented as L2, leads to an improvement in the SSIM metric. However, U-Net with L1 achieves a
higher PSNR value compared to U-Net with L2. In the case of Restormer, incorporating SSIM into
the loss function results in improvements in both the PSNR and SSIM metrics.

Table 1: Quantitative comparison of the deblurring performance with different loss functions and
architectures.

Architecture Params Loss function PSNR(dB) ↑ SSIM ↑
U-net 10.79 M L1 29.96 0.8931
U-net 10.79 M L2 29.59 0.8948

Restormer 15.20 M L1 30.83 0.9076
Restormer 15.20 M L2 31.02 0.9112

2.2 Comparison of architecture

Additionally, Table 1 also demonstrates the reconstruction performance for different neural network.
Comparing to the U-net, the Restormer achieves around 1dB and 0.01 improvement for PSNR and
SSIM, respectively. The visual comparison is presented in Fig.6. Those images for randomly sampled
from the test dataset and images from left and right side are results from the U-net and Restormer,
respectively.

9

3 Feature Work

In this report, I first design a single lens imaging system considering the chromatic aberration and ob-
ject distance, then construct a neural network to deblurre captured images. As all optical components
in this codebase are implemented by Pytorch, which support auto-differentiation. In the future work,
we can build a end-to-end design pipeline which jointly optimizes the a single DOE and corresponding
neural network like some existing work [5, 6, 7].

The basic idea of the future work is listed here:

1. Point source to sphere wave at the aperture plane: Based on the paraxial approximation,
the object can be modeled as a point source with different distances and PSF of imaging system
is shift-invariant.

(a) The sampling interval ∆x0 and ∆y0 should be carefully considered and keep the propagation
simulation accurate. The physics lengths of the field should be twice as the aperture size
to ensure correct FFT.

(b) The sphere wave at the aperture plane is defined as:

uin =
rmax

r
ei·k·r where r =

√
(x− x0) + (y − y0) + (z − z0)2 (12)

where k is the wavenumber for RGB and zo is the object distance that can be varied during
the optimization.

2. The modulation of DOE at aperture plane.

(a) The wave field uin then pass through the camera aperture and the DOE resulting in the
changes of the amplitude and phase as:

uout = uin ·A(x′, y′)ei·k·(nλ−1)h(x′,y′) (13)

where nλ is the refractive indexes for RGB wavelengths and h(x′, y′) is the height profile of
DOE needs to be optimized along with the neural network.

(b) The sampling interval of h(x′, y′) should be larger than that in wave field due to the fab-
rication limits. Also, the height map of DOE will be continuous if without any constraint
which would result in non-ideal fabrication error.

3. Propagation to the sensor plane.

(a) The modulated field then propagates in free space by a distance z to the sensor plane as:

Us(x, y, z1) =
eikz

iλz

∫∫
Uoute

ik
2z ((x−x′)2+(y−y′)2)dx′dy′ (14)

This formulation uses the Fresnel propagation operator, which is an accurate model for near
and far distances when λ ≪ z.

(b) The point spread function of the imaging system can be derived as:

pλ(x, y) ∝ |Us(x, y, z1)|2 (15)

4. From PSF to sensor image.

(a) Under the assumption of paraxial approximation, the image formation is a shift-invariant
convolution of the image and the PSF. Consequently, the off-axis aberrations like coma or
chromatic off-axis aberration are neglected.

10

(b) Further account for the wavelength sensitivity κλ of the sensor for each RGB channel:

Ic(x, y) =

∫
(Iλ ∗ pλ)(x, y) · κλdλ (16)

(c) The image Ic is captured by the sensor with specific sensor pixel size and corrupted by
noise. Often, the sensor pixel size is larger than sampling interval of wave field so we need
to downsample Ic as:

yc = S(Ic) + η (17)

where S is the pixel intergration and sampling operator and η N (0, σ2) is Gaussian read
noise.

5. Reconstruction neural network and end-to-end optimization

(a) We define a neural network G with its parameters Θ, the deblurred image can be processed
by NN as:

Îc = GΘ(yc) (18)

(b) During the end-to-end optimization, our final goal is to minimize the loss function to find
a optimal DOE height profile h⋆(x′, y′) and NN parameters Θ⋆ as:

h⋆(x′, y′),Θ⋆ = argmin
h(x,y),Θ

L
(
GΘ(yc), Ic

)
(19)

4 Conclusion

In this assignment, I implemented a single-lens imaging system and a corresponding deblurring neural
network. First, I developed code to simulate chromatic aberrations and depth-dependent point spread
functions (PSFs) derived from Fourier optics. Blurred images were then calculated by convolving
the PSFs with sharp images. Corresponding visualization methods were also implemented to better
understand the aberration phase and the distribution of the PSFs.

Next, I trained two neural networks, U-Net and Restormer, to perform deblurring. Experiments showed
that both networks successfully deblurred images for this imaging system, achieving approximately 29.5
dB PSNR and 0.895 SSIM on the test dataset. Notably, Restormer outperformed U-Net, highlighting
the advantages of transformer-based architectures.

Finally, I proposed an approach to further improve deblurring performance by jointly optimizing the
imaging system and the corresponding neural network. I believe this end-to-end optimization method
can be applied to my future doctoral research projects.

11

References

[1] O. Ronneberger, P. Fischer, and T. Brox, “U-net: Convolutional networks for biomedical image seg-
mentation,” in Medical image computing and computer-assisted intervention–MICCAI 2015: 18th
international conference, Munich, Germany, October 5-9, 2015, proceedings, part III 18. Springer,
2015, pp. 234–241.

[2] L. Chen, X. Chu, X. Zhang, and J. Sun, “Simple baselines for image restoration,” in European
conference on computer vision. Springer, 2022, pp. 17–33.

[3] S. W. Zamir, A. Arora, S. Khan, M. Hayat, F. S. Khan, and M.-H. Yang, “Restormer: Efficient
transformer for high-resolution image restoration,” in Proceedings of the IEEE/CVF conference on
computer vision and pattern recognition, 2022, pp. 5728–5739.

[4] H. Zhao, O. Gallo, I. Frosio, and J. Kautz, “Loss functions for image restoration with neural
networks,” IEEE Transactions on computational imaging, vol. 3, no. 1, pp. 47–57, 2016.

[5] V. Sitzmann, S. Diamond, Y. Peng, X. Dun, S. Boyd, W. Heidrich, F. Heide, and G. Wetzstein,
“End-to-end optimization of optics and image processing for achromatic extended depth of field
and super-resolution imaging,” ACM Transactions on Graphics (TOG), vol. 37, no. 4, pp. 1–13,
2018.

[6] S.-H. Baek, H. Ikoma, D. S. Jeon, Y. Li, W. Heidrich, G. Wetzstein, and M. H. Kim, “Single-shot
hyperspectral-depth imaging with learned diffractive optics,” in Proceedings of the IEEE/CVF
International Conference on Computer Vision, 2021, pp. 2651–2660.

[7] L. Li, L. Wang, W. Song, L. Zhang, Z. Xiong, and H. Huang, “Quantization-aware deep optics
for diffractive snapshot hyperspectral imaging,” in Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, 2022, pp. 19 780–19 789.

12

	Imaging Forward Model
	Electric field and plane wave
	Generalized Pupil function
	Constructor Method: __ init __
	calc_defocus Method
	to_aberration Method
	to_psf Method
	show_psf Method

	Generating the blurred image

	Deblurring Neural Network
	Comparison of loss function
	Comparison of architecture

	Feature Work
	Conclusion

