
Journal of Russian Laser Research, Volume 42, Number 4, July, 2021

LIDAR SENSOR-BASED OBJECT RECOGNITION

USING MACHINE LEARNING

Rui Wang,1 Mengyu An,1 Sihan Shao,1 Mingyang Yu,1

Shifeng Wang,1,2 and Xiping Xu1∗

1School of Optoelectronic Engineering

Changchun University of Science and Technology

Weixing Road 7089, Changchun City, Jilin 130022, China
2Key Laboratory of Optoelectronic Measurement

and Optical Information Transmission Technology

Changchun University of Science and Technology

Weixing Road 7089, Changchun City, Jilin 130022, China
∗Corresponding author e-mail: xipingxu opto@163.com

Abstract

Light detection and ranging (LIDAR) sensor provides complicated and large volume of environmental
point cloud data that are essential for the target recognition. In this study, we present a novel LIDAR
sensor-based target recognition approach of the point cloud data, using adaptive rounding algorithm
and optimized support vector (SVM). First, the multilayer LIDAR is used to obtain three-dimensional
point cloud data of the surrounding environment. Second, we use the grid-occupied method to cluster
the point cloud data after reducing redundant point cloud data through a self-adaptive removal method.
Third, the multiple features of target are extracted, which classified by a novel SVM based on block
feature. Finally, the classifier achieves the best effect through parameter optimization, and the different
target objects are distinguished. The experimental results show that the classification accuracy of the
target recognition method proposed can reach 93.75% under the premise of reducing training features
by at least 33.25%. Therefore, the target recognition method proposed in this study can complete the
classification of objects in the target area with a significant increase in accuracy compared to previous
approaches.

Keywords: LIDAR point cloud, target recognition, support vector machine, block feature.

1. Introduction

Light detection and ranging (LIDAR) is capable of obtaining three-dimensional spatial information

on objects [1] accurately with reliable stability and improving the accuracy of obstacle detection and

recognition. The perception and recognition of urban area environment play a prominent role in diverse

LiDAR applications [2]. Traditional pedestrian and vehicle detection algorithms mostly use image data

collected by cameras [3]. However, the complexity of the urban environment would have a great impact

on the image quality of the camera, hence limiting the accuracy of target classification. Compared with

images, LIDAR has the advantage of acquiring depth data, which are not adversely affected by weak

signals and weather conditions. The method of supervised learning in machine learning [4] is used to

ensure the accuracy of classification. Support vector machine (SVM) [5] is one of the most widely used
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classifiers in supervised learning. It can achieve high classification accuracy under the condition that

the required number of samples is relatively small. Nevertheless, as the training time increases, its

performance decreases since the data set increases.

To improve the classification accuracy, this study proposes a LIDAR sensor-based object recognition

method using adaptive rounding algorithm and block feature classification. First, the redundant point

cloud data is reduced by a self-adaptive removal method, hence prevented effectively the performance

degradation of SVM due to too large data set. Meanwhile, a new method based on block feature is used

to make the effect of classifier reaches the best. Experimental results show that this method can reduce

effectively the impact of large data set on SVM performance and improve classification accuracy.

2. LIDAR Point Cloud Data Acquisition and Preprocessing

The system used in the present study is based on a test car equipped with a Velodyne HDL-32E that

facilitates LIDAR, which is an active form of remote sensing. It measures the distance from the sensor

to the object by calculating the time interval between an emitted laser pulse and the detected reflected

signal [6] and obtains angle and intensity information by combining the built-in laser arrangement angle

and angle measurement technology. The parameters of Velodyne HDL-32E are shown in Table 1. To

obtain effectively the point cloud features of pedestrians and vehicles, we adopt the center-to-center

installation method [7]. In addition, the installation height determined to be 1.85 m by referring to the

height of pedestrians and common vehicles [8]. The harness distribution and installation of LIDAR are

shown in Fig. 1.

Table 1. The Parameters of Velodyne HDL-32E.

Height Diameter Weight Number of Laser Sensor Power

inch inch kg Sensor Channels Wavelength Rotation Rate Consumption

5.7 3.4 1 32 903 nm 5 – 20 Hz 12 W

Measurement Range Angular Resolution Field of View

Range Accuracy Vertical (τ) Horizontal (η) Vertical Horizontal

Up to 100 m < 2 cm (within 25 m) 1.33◦ 0.16◦ – 30.67◦ to + 10.67◦ 360◦

Fig. 1. System configuration; here, the distribution of LIDAR harness (a) and the installation of LIDAR (b).
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2.1. LIDAR Point Cloud Clustering

Fig. 2. Flow chart of segmentation and de-
redundancy process of LIDAR data.

Multilayer LIDAR can obtain 700,000 scanning

points per second [9], so it is necessary to remove redun-

dant point clouds to improve the efficiency of clustering.

The fewer interference points on the ground and the re-

gion of non-interest, the smaller impact on the clustering

of pedestrians and vehicles. It can be assumed that the

point cloud data of trees and buildings in the environ-

ment are invalid, so the redundant data can be filtered by

setting a height threshold. The threshold is set as 2.5 m

to ensure that the candidate pedestrians and vehicles are

included in the region of interest (ROI), which is also

known as the estimated short region [10]. The ground

LIDAR cloud point is then removed, and an adaptive al-

gorithm is introduced to address sloped-ground removal,

since this is likely to be incorrectly identified as an ob-

ject. In Fig. 2, we show a schematic diagram of the point

cloud segmentation and de-redundancy process.

Fig. 3. Projection to the X –Y plane and searching.

Finally, the LIDAR point cloud is projected on

the X –Y plane. The occupancy grid map [11] is

built according to the density of the point cloud.

In Fig. 3, the gray points in each grid represent the

sum of the number of LIDAR point clouds that fall

on a single grid. Use the four-direction searching

rule [12] to search in the order from top-to-bottom

and then from left-to-right. After data searching,

a linked area is regarded as one separate category

of data clustering. When the point number in the

grid area is smaller than the pre-setting threshold,

the clustering is discarded.

The resolution of grid is defined as follows:

Assume the original dataset is DS = {LPi ∈
Rd |LPi = (xi, yi, zi), i = 1, 2, · · · , N}, where

(xi, yi, zi) is the coordinate of point clouds. Based

on the distribution of points on the X –Y plane, parameters (xmin, ymin), (xmax, ymax), and the grid size

S can be used to show that the resolution of the grid is

m× n, where m =
xmax − xmin

S
+ 1, n =

ymax − ymin

S
+ 1. (1)

The grid size S is 0.1×0.1 m in this study; this parameter is determined by the LIDAR installation

position and its internal parameters. Within the effective detection range of Velodyne HDL-32E used in

this study (i.e., 25 m), the distance between two adjacent point clouds in the same plane is <0.1 m.
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2.2. Self-Adaptive Removal Method

Pedestrian and vehicle point clouds are connected to each other through the ground. Therefore, the

target point clouds will be separated from each other after the operation of ground removal is performed,

thereby reducing the impact of redundant point clouds on clustering. The traditional ways to remove

ground are to treat the ground as a fixed plane [13]. Whereas urban roads are undulating generally, so

the ground with a certain inclination angle can be often misjudged as the target object. For this study,

we propose a self-adaptive removal method for ground removal. Specific steps are as follows:

1. The point cloud characteristics of pedestrians and vehicles in the region of interest (ROI) are

summarized and statistically analyzed to determine the relationship between the density of the

target point cloud ρi in the region and the distance between the points in the neighborhood dij [14],

which is expressed as ρi =
k∑k

j=1 |dij |
.

2. The point cloud density range and height range of pedestrians and vehicles in the region of interest

are set.

3. The minimum Z value of the Z axis in the point cloud data in the region of interest is found out

and a certain height is deleted.

4. The point cloud is projected into the X –Y plane, and the corresponding interval parameter T and

interval number N are determined in the projection plane [15]. If the point cloud density is within

the density range, proceed to the next step. If not, the data in the interval will be removed as

redundancy, and this step will be repeated N times.

5. Judge the change of point cloud density with the Z value in the above interval. If the point cloud

density in the interval changes sharply with change in the Z value, hence indicates that there may

be pedestrians or vehicles in the area. Otherwise, the data in the interval will be removed as

redundancy.

The results of self-adaptive removal are shown in Fig. 4.

Fig. 4. Effect of using self-adaptive removal algorithm; here, without removal algorithm (left panel) and with
removal algorithm (right panel).
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3. Classification

The classification of point cloud data is the process of identifying point cloud attributes. The accu-

rate classification has great significance for improving the reliability of modeling. After the process of

segmentation, we apply a novel feature-based support vector machine (SVM) for classification [16].

3.1. SVM Classification Algorithm

SVM is a supervised learning algorithm that originated in statistical machine learning theory. The

algorithm attempts to find a classification plane maximizing the margins on both sides of it.

The soft edge concept [17] is used to optimize the separation hyperplane,

min(‖w‖2) + C
∑
i

εiyi(w
Txi + b) + εi ≥ 1, (2)

where εi is the slack variable introduced to avoid overfitting, w is the normal vector of the classification

plane, x is the input eigenvector, C is the penalty term, (xi, yi) is a given data set, and b is a constant.

The point cloud distribution of pedestrians and vehicles is often nonlinear, and classification cannot

be achieved through simple mapping. Consequently, it is necessary to use the kernel function to calculate

the inner product function of the implicit mapping between the vectors [18]. The kernel function greatly

simplifies the inner product operation of solving the mapping space. Commonly-used kernel functions

include linear kernel function, radial basis function (RBF) kernel, and polynomial kernel function. The

three different kernel functions have been tested under the experimental data in this study, and the results

are shown in Table 2.

Table 2. Kernel Function Training Results.

Kernel function Support vector number Number of iterations Recognition accuracy

Linear kernel function 426 1131 93.7505%

Radial basis function (RBF) 945 924 90.3461%

Polynomial kernel function 2456 1426 57.8259%

Since the simple structure of the linear kernel function, the number of iterations is relatively small,

and the prediction speed is faster while improving the classification accuracy effectively. Therefore, in

this study, we use the linear kernel function as the kernel function of the SVM classifier.

3.2. Feature Extraction

With the LIDAR data clusters, many variables can be used as an input for SVM training [19].

However, the data are often redundant and possess irrelevant variables. Consequently, a feature selection

procedure is necessary to address this problem. To describe the characteristics of a clustered point cloud

more accurately, we propose a concept of block area based on the outline feature and internal feature of

the point cloud area.
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3.3. Outline Features Extraction

We establish a bounding box [20] on the clustered point clouds to describe the external features more

conveniently. The spatial shape and position information on the target object in the point cloud data is

available and clear. The spatial geometric information including height, projected areas, and volume of

bounding box are usually set as features for training.

To describe the size of target data set, we define Δh as the difference between maximum and minimum

heights of the LIDAR point bounding box. Here, l and w represent the length and width of projected

points of the bounding box in the X –Y plane. Generally, the height between pedestrians and vehicles is

of little difference. We amplify height difference through employing Δh3 as training feature. Meanwhile,

use the lw, lΔh, wΔh, lΔhw, and l/w to enlarge and shrink the border of the box, expecting to contribute

to classification accuracy. These quantities are used to construct the spatial feature of the target point

cloud

f1 = {Δh,Δh3, lw, lΔh,wΔh, lΔhw, l/w}. (3)

The target object’s centroid vector and centroid variance vector are defined as follows:

f2 = (x̄− xmin, ȳ − ymin, z̄ − zmin), f3 =

√√√√ N∑
i=1

f2
2

n− 1
, (4)

where x, y, and z are the average of the coordinate on the X, Y , and Z axes of the internal LIDAR spot

of the target object, respectively.

3.4. Internal Feature Extraction

As the distance d increases, the number of point clouds N contained in the target point cloud decreases

as

f4 =

{
N =

αw + βh

γD2

}
, (5)

where α, β, and γ are the weight of these parameters separately. Since the vertical and horizontal

resolutions of LIDAR are 1.33◦ and 0.16◦, respectively, and the weight of width α is greater than the

weight of the height β. Based on the characteristics of the LIDAR point-cloud density, we define density as

another feature. Similarly, point-cloud data within the clustering is relatively denser; thus, the dispersion

degree of point cloud could be defined as another feature. We define the spatial dispersion as the ratio

of the number of LIDAR points to the bounding box volume,

f5 =
N

lΔhw
, (6)

where N represents the number of points within the clustered segmentation. The novel LIDAR point

intensity feature [21] is invented to describe point cloud data. For a vehicle, it is recognized that the

license plate’s reflection intensity differs from other regions [22]. Graphical representations of vehicular

plates are shown in Fig. 5. The surface material of vehicle is mostly steel and the difference in the laser

reflection intensity is small, which is in stark contrast to the plate region. We select the mutation of the

license plate’s intensity as a training feature due to the distinct intensity information associated with the

license plate.
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Fig. 5. License plate intensity feature:
general view (top) and the plate enlarged
(bottom).

Fig. 6. Block feature of a pedestrian.

To describe the internal point cloud characteristics of pedestrians, the concept of a shape number [23]

descriptor is introduced. This method is utilized to perform secondary clustering within the clustered

point cloud. In this case, we take pedestrians as an example. After the process of pedestrian clustering,

the body can be divided into such sections as head, upper body, and legs. Based on the morphological

relationship between these individual clustering, pedestrians can be re-clustered into 3 to 4 categories.

We use the number of categories after secondary clustering as another feature. The specific steps involved

in LIDAR data re-clustering are as follows:

(1) Project the clustered data onto the plane which is assumed to have a maximum area

{(x0, y0), (x1, y1), . . . , (xn, yn)}.
(2) Form a 2D lattice grid and search the area via four-neighborhood method.

(3) Analyze each point’s search pattern of neighborhood based on the searching direction combination.

This process is illustrated in Fig. 6.

Fig. 7. Experimental results with segmentation result (a) and classification result (b).
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4. Experiment and Results

In order to verify the efficiency of our method for clustering, we conduct experiments in a complex

urban environment. The experimental platform is i7 8700K CPU, 16 GB memory, Windows 10 operating

system, using a MATLAB R2019b environment to achieve classification results. The experimental results

show that the classification accuracy is as high as 93.75%. The training sample library constructed in

this study contains 1,327 positive samples and 1,742 negative samples of pedestrians and vehicles, which

can basically meet various possible interferences. The clustering result is illustrated in Fig. 7 a. The

different colors represent the various clustered point cloud data. In this scenario, we collectively cluster

the scanned environment into 39 classes, which cover all the pedestrian and vehicle candidate clusters.

A total of 70,648 points of data are included in the frame scene, and it takes 1.28 s to perform data

classification.

Fig. 8. Scree plot.

In order to reduce the redundant features ex-

tracted in vehicle detections, the principle compo-

nent analysis (PCA) [24] is introduced to convert

a set of possibly correlated observations into a set

of values of linearly uncorrelated variables. We are

able to filter the input features and subsequently

achieved at least 33.25% reduction of training fea-

tures. The reduction is visualized in Fig. 8.

Meanwhile, in order to verify the contribution

of block features to the recognition results, the data

based on block features and non-block features are

classified respectively. The results show that, after

introducing block features, the classification accu-

racy can reach 93.7505%, which is 3.245% higher

than that without this feature. The visual classification result is shown in Fig. 7 b.

We implement the same procedures on selected samples through KNN, Näıve Bayes, Multilayer Per-

ception, Random Forest, Logistic Regression, and SVM as a comparison within classifiers. The classifier

accuracy results are shown in Table 3.

Table 3. Comparison of Different Classifiers.

Correctly Kappa Root Mean Relative

Classified Rate Coefficient Square Error Absolute Error

SVM 93.7505% 0.8964 0.1857 14.3023%

KNN(K=3) 89.0244% 0.8334 0.2325 17.1030%

Näıve Bayes 90.2439% 0.8526 0.2511 15.0269%

Multilayer Perception 93.0894% 0.8952 0.1873 14.3037%

Random Forest 92.6829% 0.8888 0.1880 18.7592%

Logistic Regression 90.6504% 0.8579 0.2475 14.6731%
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5. Conclusions

Based on LIDAR sensor, in this study, we investigated a grid-occupied based segmentation method

and proposed a novel block morphology feature based on pedestrian data for classification, using SVM.

A more adaptive algorithm is presented for removing effectively the undulating road surface in the urban

environment, reducing 33.25% training characteristics. Region growing is used in four-neighborhood to

obtain clustering point clouds. The experimental results demonstrate that an accuracy of 93.7505% is

achieved, which is an increase of 3.245% compared to the case where the feature is not used. Furthermore,

when compared to several existing methods, the classification results indicate that the SVM approach

yields good performance. Therefore, the method in this study is effective in improving accuracy of target

recognition.
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