ELEC-E4440 - Microwave Engineering Workshop

A 1.5 GHz Doppler Radar

SIHAN SHAO YIFAN YU

Work Division

- Sihan: LPFs, Coupler, Mixer
- Yifan: Oscillator, Amplifier

Our presentation will roughly follow the order in which the signal flows

Results

- Oscillator output power: 5 dBm
- Cable insertion loss: 1 dB (estimate)
- LPF insertion loss: 0.69 dB
- PA gain: 24 dB
- Coupler insertion loss: 3.6 dB
- Circulator insertion loss: 0.5 dB
- Total transmitted power: 23.21 dBm (209 mW)

CalculatedMeasured1.75m1.32mm $\left(\frac{\operatorname{Pt} G G \sigma \lambda^2}{(4 \pi)^3 \operatorname{Smin}}\right)^{1/4}$

1.74733

- Antenna Gain: 9 dBi (7.94)
- Radar cross section: 0.035 m²
- Wavelength: 0.2 m
- Noise floor: -60 dBm (Smin = 1 uW)

RADAR CROSS SECTION

Radar cross-section (RCS) is a measure of how detectable an object is by radar. An aircraft's RCS depends on its physical shape, materials, antennae, and other sensors. Onboard sensors can also play a role in determining RCS as materials and design.

Oscillator (two versions)

- Left: Version 1, Original Clapp oscillator
- Right: Version 2, "Degenerated Clapp" achieving higher output power

Measurement Setup

- Supply voltage: 9V
- tinySA Ultra: 0 to 6 GHz
- External 10 dB attenuator (tinySA input max. 6 dBm)

Measurement Setup (Version 2 only)

Measured Total Output Power: 5.1 dBm

Output Power: Original Clapp

- Simulated Output Power: 4.7 dBm at 1.47 GHz
- Measured Output Power: 1.4 dBm at 1.42 GHz

- Simulated Output Power: 9.1 dBm at 1.41 GHz
- Measured Output Power: 5.3 dBm at 1.4 GHz

Filter Design

LOW-PASS FILTER AFTER OSCILLATOR LOW-PASS FILTER AFTER MIXER

The oscillator generates a signal at around 1.5GHz

Harmonic signals such as 3GHz and 4.5 GHz should be eliminated

- The mixing process generates various frequencies, and the desired frequency is about a few MHz
- Harmonic signals such as 1,5 GHz to 6 GHz should be eliminated

Filter Design

LOW-PASS FILTER AFTER OSCILLATOR

a) Layout 1st of Low-pass filter on AWR

c) Prototypes of Manufactured LPF

LOW-PASS FILTER AFTER MIXER

b) Layout of 2nd Low-pass filter on AWR

d) Prototypes of Manufactured LPF

Filter results

HARMONIC REJECT FILTERS

- Effectively targets specific frequency points
- Removes undesired frequency components

a) Low-pass filter after oscillator

b) Low-pass filter after mixer

Hybrid Coupler

FUNCTION

- Splits or combines signals while maintaining phase relationship
- **PERFORMANCE**
 - Transmission coefficients (S21, S31) close to simulated values (-4.92dB, 5.37dB vs. -3.642dB)
 - Power distribution is nearly equal, showing strong performance

Mixer Design

DESIGN CONSIDERATIONS

- Ground-end microstrip lines as inductors, accounting for parasitic effects and limited choices
- Open-ended microstrip lines as capacitors for impedance control
- Microstrip lines introduces less lossy comparing with lumped elements

OUTPUT HANDLING

- Mixer produces various frequency products
- Design of a specialized low-pass filter to reject RF, LO, and harmonic signals simultaneously

a) Layout of Mixer on AWR

b) Prototypes of Manufactured Mixer

Mixer Results

a) Simulated Conversion Loss on AWR

b) Measured Conversion Loss

Comparing the practical and simulated results between OdB and 15dB, we observe a very similar overall trend, which indicates the good performance of our mixer.

Problems and Future Optimizations

1. Optimization of Oscillator:

- Output power instability
- Frequency sensitivity
- Harmonics reduction
- Use transmission lines instead of discrete LC components to construct the resonant circuit
- Use temperature-compensated bias network
- Add shielding?

a) hot air significantly decreases the output power

b) one possible temperaturecompensated bias network

2. Optimization of passive components:

miniaturization of components can reduce the lossy of our system

Thanks for your Attention !