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Abstract
Conventional submillimeter-wave imaging systems struggle to achieve scalability,
real-time performance, and low complexity simultaneously. Microwave computational
imaging offers a solution by using frequency diversity to image scenes through various
measurement modes, shifting complexity from hardware to software. Typically,
these systems first design the element that creates diverse illumination and then tune
reconstruction algorithm parameters for good image quality.

In contrast to the sequential design approach, this thesis proposes a joint op-
timization method for a frequency-diverse phase hologram and the reconstruction
neural network parameters in submillimeter-wave imaging. The goal is to optimize
the hologram pattern for enhanced frequency diversity and its corresponding neural
network for improved image quality.

First, a literature review of computational imaging systems from optics to
millimeter-wave is presented. Additionally, differentiable imaging theory and recent
work in the joint optimization of computational imaging systems are studied. A
PyTorch-based Fourier-optics simulation codebase is developed to model the imaging
physics process, mapping the reflectivity of objects to the reflected frequency response.
This codebase analyzes the impact of joint optimization on efficiency, frequency
diversity, and reconstruction quality, resulting in two optimal holograms with minimal
unit sizes of 1 mm and 2 mm for manufacturing.

To validate the performance of the proposed computational imaging system with
holograms, a quasi-optics setup operating at 220-330 GHz is built. While few
similarities were observed between simulated and measured field patterns, scanning
the fields near the actual hologram and the corresponding comparisons suggest that
the designed holograms work as expected. The measured frequency diversity of the
designed holograms exceeded that of both the simulations and the previous design.
The comparison of measured and simulated frequency responses, along with imaging
experiments, indicates partial validity of the current imaging physics model. Future
work should focus on developing a more accurate model that accounts for non-ideal
factors to better match the measured and simulated frequency responses.

Keywords submillimeter wave, computational imaging, differentiable design, neural
network, phase hologram
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Symbols and abbreviations

Symbols

𝛼 learning rate of neural network
𝛽 learning rate of hologram
𝛽0 average wavenumber of the medium
𝑐 speed of light in vacuum ≈ 3 × 108 [m/s]
𝛿 signed value difference
𝛿ℎ loss tangent of the hologram material
𝜖𝑟,ℎ relative permittivity of the hologram material
𝑓 (·) forward model of imaging system
𝑓𝑥 spatial frequency of x portion
𝑓𝑦 spatial frequency of y portion
𝐺 (·) computational algorithms
𝐺 (·, ·) scalar Green function between two positions
𝐺 learn(·) learning-based computational algorithms
𝑔 indirect measurement
𝑔𝑙 Gumbel noise for each category 𝑙
ℎ height map of the hologram
ℎ̂ updated height map of the hologram
𝐻 transfer function of angular spectrum method
H measurement matrix
J regularization term
𝑘0 free-space wave number
𝜆 wavelength
L loss function of neural network
𝑀 number of measurement frequencies (modes)
𝑛 refractive index
𝑛𝛿 deviation from the average refractive index
∇ × A curl of vectorin A
𝑁 number of scene pixels
𝑃 plenoptics function
𝑞 quantization operator of hologram
𝑄 predetermined quantization set of hologram
𝑟 𝑓 radius from the beam’s central axis
𝜌 correlation coefficient
𝜎 sigmoid function
𝜎𝑖 i singular values
𝑡𝑘 stepsize
Θ all possible parameters of neural network
Θ̂ updated parameters of neural network
𝜙 phase map of the hologram
𝜙̂ updated phase map of the hologram
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Π𝑄 quantization projection operation of hologram
r spatial position of field
rA position at the aperture plane
rf position at the feed plane
rR position at the receiver antenna
rS position at the imaging scene
rT position at the transmitting antenna
𝚽 angle of incident field
𝑈1 quadratic approximation of off-axis parabolic Mirror
U unitary matrix of SVD
V unitary matrix of SVD
Σ diagonal matrix containing singular values of SVD
TA impulse response function at aperture plane
E electric field strength
E0 incident electric field from aperture plane
EA electric field at aperture plane
Efeed electric field at the feed plane
Ehol electric field modulated by the hologram
Ein electric field incident on the hologram
Es scattered electric field between aperture and scene
ET total electric field between aperture and scene
𝑥 cartesian coordinate
𝑥𝑖 i input variable in computational graph
𝑦 cartesian coordinate
𝑦𝑖 i output variable in computational graph
𝑧 cartesian coordinate
f scene reflectivity vector
f̂ reconstructed scene reflectivity vector
g measurement vector
n noise vector
𝑣𝑖 i intermediate variable in computational graph
𝑃̂ reconstructed plenoptics function
U uniform noise in height map of hologram
𝜔𝑥 beam waist radius of x portion
𝜔𝑦 beam waist radius of y portion
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Operators

A𝑇 transpose of matrix A
A ∗ B convolution of A and B
Ax dot product of vectors A and x
∇ × A curl of vectorin A
𝜕

𝜕𝑥𝑖
partial derivative with respect to variable 𝑥𝑖∑︁

𝑖 sum over index 𝑖∫
S integral over area S
F {·} Fourier transform
F −1{·} Fourier transform
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Abbreviations

1-D one-dimensional
2-D two-dimensional
3-D three-dimensional
AD automatic differentiable
ADMM alternating direction method of multipliers
ASM angular spectrum method
CASSI Coded aperture snapshot spectral imaging
CNN convolution neural network
CS compressive sensing
CSPI compressive single-pixel imaging
DCNN deconvolution neural network
DOE diffractive optical element
DUN deep unrolling network
EM electromagnetic field
FCMI frequency-diverse computational microwave imaging
FoV field of view
FSSs frequency-selective surfaces
GAN generative adversarial network
GHz gigahertz
HSI hyper-spectrum information
HQS half quadratic splitting
ISTA iterative shrinkage/thresholding algorithm
MAE mean absolute error
MNIST Modified National Institute of Standards and Technology
NN neural network
OAP off-axis parabolic
OEWG open-ended waveguide
OUI an object under imaging
RAM radar absorbing material
RoI region of interest
RF Radio frequency
Rx receiver
SLM spatial light modulator
SNR signal-to-noise ratio
SPD single-pixel detector
SVD singular value decomposition
Tx transmitter
VNA vector network analyzer
VNAX vector network analyzer extension
WR waveguide rectangular
Q-factor quality factor
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1 Introduction
Radio frequency (RF) imaging, including millimeter and submillimeter-wave, offers
the significant advantage of penetrating materials opaque to visible wavelengths. These
capabilities make it a prime choice for applications such as security screening [1],
through-wall imaging [2], nondestructive testing [3], and biomedical imaging [4]. The
objective of various techniques in this frequency range is to restore a spatial reflectivity
map of an object through analyzing scattered field measurements. Submillimeter-wave
image formation often relies on electronic or mechanical beam scanning, coupled with
quasi-optical methods to transfer energy from the object to sensors. In mechanically
scanned systems, the focus on the object plane is directed by mirrors with mechanical
drives. However, submillimeter-wave receivers are notably large and challenging to
scale into dense arrays similar to those in digital cameras [5]. This limitation usually
requires a scanning method, either electronic or optomechanical, to achieve a usable
field of view and resolution. Additionally, incorporating complex control circuitry or
mechanical scanners increases the system’s size, cost, and complexity.

Microwave imaging that utilizes diverse illumination of quasi-randomized fields
has shown significant promise in achieving cost-effective, high-resolution, real-time
imaging [6, 7, 8, 9]. Unlike traditional beam-scanning methods, these approaches utilize
active or passive aperture to generate a set of diverse field distributions and acquire
scene measurements that contain ample information for image reconstruction. These
methods facilitate more adaptable hardware designs. Frequency-diverse antennas [9],
programmable metasurfaces [8], frequency-selective surfaces (FSSs) [10], or phase
holograms [6] are typically utilized to create random fields. However, these approaches
are either heuristic or depend on proxy metrics for diverse field distributions instead
of evaluating imaging quality after post-processing. Finding an optimal computational
imaging system remains challenging without a true end-to-end approach that jointly
optimizes the imaging model parameters and the data processing algorithm.

Jointly designing computational optics systems and post-processing algorithms
has been widely explored in recent years, such as extended depth of field imaging
[11], super-resolution imaging [12], snapshot hyperspectral imaging [13, 14], high-
dynamic-range imaging [15]. These methods apply automatic differentiation and
efficiently integrate the imaging physics model into the workflow of data-driven
algorithms to find optimal computational imaging systems. However, there are only a
few works utilizing these approaches in frequency-diverse computational imaging.
Based on previous research about hologram [6, 16, 17], this thesis introduces a new
paradigm for designing dispersive hologram computational imaging system: end-to-
end optimization of a hologram concerning the imaging quality of a reconstruction
algorithm, using automatic differentiation. An image formation model based on
fully-differentiable wave propagation is developed and employed to optimize both the
system parameters and the image processing algorithm parameters.

This thesis aims to create an optimal hologram for a sub-millimeter frequency-
diverse imaging system by integrating physics and data-driven-based models through
automatic differentiation. This effort is well-supported by a literature review of recent
computational imaging methods across the optics and millimeter-wave spectra. The
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imaging model in this thesis is based on the Fourier optics simulations. The hologram is
optimized end-to-end using a data-driven approach that conducts an objective function
to the reconstructed image. Before manufacturing the final designs, comprehensive
simulations were performed to evaluate the viability of the proposed method and to
understand how different design parameters affect the hologram’s efficiency, frequency
diversity, and manufacturability. Finally, the performance of the imaging system with
the manufactured holograms is validated through submillimeter-wave measurements
within the 220-330 GHz frequency range.

The structure of this thesis is as follows: Chapter 2 reviews the literature on
computational imaging methods across the optics and millimeter-wave spectrum,
showcasing examples of previously developed imaging systems. It also delves into
the basics of differentiable imaging and highlights recent work in the joint design of
imaging systems and algorithms. Additionally, this chapter introduces two primary
reconstruction techniques used in computational imaging: numerical optimization
and neural networks. Chapter 3 begins by explaining the mathematical theory behind
the frequency-diverse imaging model and introduces the simulation method based
on Fourier optics. In addition, the quantization-aware differentiable optimization
framework for dispersive hologram imaging is proposed in this chapter, which is
applied together with the optimization of the reconstruction algorithm. Chapter 4
presents simulation results of the proposed method, detailing the performance of
various hologram designs. It also introduces the designs selected for manufacturing.
Chapter 5 describes the actual imaging setup with the designed holograms and presents
experimental results for the fabricating holograms, including a comparison to the
simulations. Finally, Chapter 6 summarizes the work, summarizing the thesis’s
contributions and findings.
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2 Background

2.1 Computational imaging
Computational imaging is distinguished from traditional imaging by its physical
processes [18]. Traditional imaging typically involves a direct one-to-one mapping
from the object scene to the sensor. In contrast, computational imaging estimates scene
images from indirect measurements using sophisticated algorithms, thereby reducing
the hardware burden. A typical computational imaging system consists of two main
stages: physical encoding and computational decoding, as depicted schematically in
Fig. 2.1.

Encoding 𝑦 = 𝑓(𝑥) Decoding 𝑥 = 𝑓−1(𝑦)

object imaging deviceimaging devicesource sensor

VNA

measurements processing restore

coherence
polarization
distribution

misalignment
imperfection
loss

diffraction
reflection
absorption

quantification
noise

Figure 2.1: A diagram representing a standard computational imaging system. The
encoding system includes sources, electromagnetic (EM) propagation, wave-object
interaction, and measurement sensors. The decoding process conducts reconstruction
of the target from measurements.

For physical encoding, assuming the electric-magnetic field can be will described
a function [19] with multiple dimensions of information as below:

𝐿 = 𝑃(r,𝚯, 𝑡, 𝜆), (2.1)

where r = (𝑥, 𝑦, 𝑧) is the spatial position, 𝚯 = (𝜃, 𝜙) is the angle of incident field,
𝑡 is the time of arrival of the EM-field, and 𝜆 is the wavelength. Additional wave
properties, such as polarization, coherence, and phase, can also be included in this
function. Each dimension of the EM field (space, time, angle, spectrum, polarization,
phase, etc.) provides different information about the scene. For example, the spatial
information of the field may reflect the distribution of objects in one scene, and the
spectrum is strongly related to material properties. The encoding phase converts
electromagnetic waves from an object into indirect measurements. This process
includes the interaction of waves with both the entire imaging system and the object,
and it differs from traditional imaging systems by considering the underlying precise
physical model of imaging system 𝑓 (·) and utilizing decoding stage 𝐺 (·) to estimate
the desired physical quantity from the measurements.

The concept of computational imaging, described by this function, involves
using various modulation methods to acquire different projections of the multi-
dimensional light field information. This information is then reconstructed using
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advanced algorithms, such as numerical methods or neural networks. Next, some
typical computational imaging applications based on this concept will be introduced.

2.1.1 Coded aperture snapshot spectral imaging

Coded aperture snapshot spectral imaging (CASSI) aims to encode the 3-D hyper-
spectrum information (HSI) into a single 2-D compressive image. Subsequently, the
corresponding HSI is reconstructed using a reconstruction algorithm [20], which can
be represented as:

𝑃(𝑥, 𝑦, 𝜆)
𝑓 (·)
−−−→ 𝑔(𝑥, 𝑦)

𝐺 (·)
−−−→ 𝑃̂(𝑥, 𝑦, 𝜆), (2.2)

where 𝑃(𝑥, 𝑦, 𝜆) is the sliced plenoptic function of object scene, 𝑓 (·) is a coded
imaging system, 𝑔(𝑥, 𝑦) denotes the indirect measurements and 𝐺 (·) presents the
computational decoding algorithms.

Figure 2.2: CASSI pipeline from [21]. The scene information undergoes three
types of optical processing, i.e., spatial modulation, spectral dispersion, and spectral
summation.

In the CASSI system, as shown in Fig. 2.2, the scene information is initially
projected onto the coded aperture, which acts as a spatial modulator. The spatially
modulated information is subsequently modified by a dispersive element before it
impinges onto the detector. Finally, the compressive measurements in the detector are
realized by the summation of the dispersive field over the detector’s spectrum range
sensitivity.

2.1.2 Compressive single-pixel imaging

Compressive single-pixel imaging typically involves modulating the light coming
from the scene with a series of patterns generated on a spatial light modulator (SLM).
Then, the single-pixel detector (SPD) is utilized to acquire the modulated intensity
measurements. Each pattern corresponds to a different measurement, and the patterns
are designed in such a way that they allow for the efficient reconstruction of the image
using compressive sensing algorithms, which can be expressed as:

𝑃(𝑥, 𝑦)
𝑓 (·)
−−−→ 𝑔(𝑛)

𝐺 (·)
−−−→ 𝑃̂(𝑥, 𝑦), (2.3)

where (𝑥, 𝑦) represents the 2-D plenoptic function of object scene, 𝑓 (·) is specific
coded imaging system and 𝑔(𝑛) is the 1-D measurements corresponding to different
measurement patterns.
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a) Active SPI: modulated light is focused onto the object, and the
reflected/transmitted light is collected by an SPD.

b) Passive SPI: the image of the object is sampled by the SLM, and the
sampled information is detected by an SPD.

Figure 2.3: Schematics of two types of SPI imaging from [22].

The single-pixel camera [22] mainly consists of four components: a light source
with a single frequency, a focusing lens, an SLM, and an SPD. SPI operates in two
basic modes, which are forward modulation and backward modulation, as depicted in
Fig 2.3. Both techniques can recover the image of the object using the measured signal
from the SPD, with a series of binary-coded patterns generated on the SLM that change
over time. However, SLMs at submillimeter wavelengths are mostly inaccessible,
which limits the capability of single-pixel imaging in this spectrum.

2.2 Frequency-diverse computational microwave imaging
Frequency-diverse computational microwave imaging (FCMI) draws inspiration from
compressive single-pixel imaging (CSPI) by encoding scene information using a series
of complex field patterns across a broad bandwidth. This approach ensures that the
aperture generates various field patterns based on the input frequency. Unlike CSPI,
where patterns change over time on an SLM to project the scene into 1-D measurements,
FCMI leverages frequency-dependent pattern variation from the aperture to encode
the spatial information of the object into the frequency domain.

2.2.1 Frequency diversity via metamaterial aperture

The operation of metamaterial apertures, which generate diverse radiation patterns
at microwave frequencies, is introduced. The first frequency-diverse metasurface in
Fig. 2.4 was implemented using the diversity of metamaterial elements’ resonance
frequencies [23]. In this framework, achieving frequency diversity (18-26 GHz) relies
on the sharp resonance of metamaterial radiators and the sharpness of the element
resonance can be quantified by its quality factor (Q-factor). As the Q-factor of the
metamaterial resonators increases, the number of diverse field patterns also increases.
However, in practical applications, the Q-factor cannot be increased indefinitely. Strong
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resonance leads to significant dielectric and conduction losses [24], which limits
the achievable Q-factor. Therefore, a cautious optimization procedure is essential
to determine the optimal balance between the Q-factor and radiation efficiency for
improved imaging.

Figure 2.4: The frequency-diverse aperture consists of multiple resonating circuits
with varying resonant frequencies distributed across the aperture, resulting in a
complex field distribution. (from [23]).

Figure 2.5: a) Overall view of the cavity imaging system including the transmitting
cavity. b) Example reconstructed image (from [9])

To resolve the conflict between Q-factor and efficiency, an alternative approach
[9] utilizes spatially varied guided modes within the feeding structure to activate the
metamaterial components. This technique’s primary advantage is its ability to sample
the guided mode with weakly resonant meta-components while reducing dielectric and
conduction losses. This is achieved without imposing strict limitations on radiation
efficiency and Q-factor. The excellent imaging performance of the cavity-backed
metasurface is due to its adaptation into planar 2D configurations using a printed
cavity as shown in Fig. 2.6 [26, 25, 27]. This setup involves a metasurface printed
on a dielectric substrate, with its edges surrounded by conducting walls to create a
printed cavity. The cavity is less than half a wavelength thick, supporting single-mode
excitation in the broadside direction. Simulations of the field distribution inside this
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Figure 2.6: a) Frequency-diverse aperture based on a printed cavity. Simulated
magnetic field inside the cavity at example frequencies: b) 17.5 GHz c) 22GHz d)
26.5GHz (from [25])

cavity in Fig. 2.6 demonstrate the ability to engineer highly diverse mode patterns at
frequencies of 17.5 GHz, 22 GHz, and 26.5 GHz.

2.2.2 Frequency diversity via phase hologram

Holograms are diffractive elements designed to reshape EM field [28], which are
categorized into amplitude andphase types basedon which characteristic they modulate.
The structural distinctions between these two types of holograms are depicted in Fig.
2.7. Amplitude holograms feature a metallic grating on a dielectric film, reflecting
and diffracting incoming waves according to the grating’s size. This process partially
blocks the wave, leading to the lower efficiency characteristic of these holograms.
The phase hologram is characterized by a complex transmittance function, reflecting
a specific thickness profile. The complex transmittance indicates how the phase of
the incoming wave will be changed after transmitting through the structure. The
structure of holograms varies based on their intended functionality, such as focusing
[29], redirecting [30], splitting [31], and imaging [6].

Figure 2.7: Local structure of amplitude and phase holograms.(from [28])

Frequency-diverse phase holograms, unlike conventional radio-wave holograms
[32], are designed to generate a spatially varying electric field with frequency at a
distance. In [17], a quasi-random synthesizing approach is proposed for frequency-
diverse phase holograms that operate at 50–75 GHz (WR-15) and 220–330 GHz
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(WR-3.4) bands. In experiments, a trained, fully connected neural network is utilized
to localize a corner-cube reflector within the region of interest (RoI) illuminated by a
designed dispersive hologram. The results indicate that these frequency-diverse field
distributions modulated by the hologram can effectively encode the spatial information
of the target.

Figure 2.8: a) Photograph of the imaging setup. b) 3-D surface plot of the hologram
structure. (from [6])

a) Prediction images and the corresponding absolute
value of image error at WR-15.

b) Prediction images and the corresponding absolute
value of image error at WR-3.4.

Figure 2.9: Reconstruction results from the neural network from [6].
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Additionally, a novel submillimeter-wave imaging technique that combines a
dispersive hologram with a neural network is developed in [6] and the system is shown
in Fig. 2.8. An off-axis parabolic mirror collimates the Gaussian beam generated
by a corrugated horn antenna, and a hologram modulates the collimated beam to
illuminate the target in the RoI. A millimeter-wave extender, linked to a vector network
analyzer (VNA), captures the hologram’s back reflection from the RoI. A trained
deconvolution neural network estimates the object image from the reflection signal.
Fig. 2.9 demonstrates some reconstruction results at the WR-15 and WR-3.4 bands,
respectively.

Despite these studies demonstrating the significant potential of dispersive holo-
grams in submillimeter-wave computational imaging, challenges remain to be ad-
dressed. For instance, the designs of dispersive holograms in [6, 17] rely on a
quasi-random approach, leaving uncertainty about their optimality for producing
varied field distributions. This raises the question: Is there a method to optimize
the hologram’s thickness profile while considering the reconstruction algorithm’s
quality? To tackle this issue, this thesis introduces a novel optimization technique for
frequency-diverse phase holograms detailed in Section 3.

2.3 Differentiable imaging
Differentiable imaging represents a computational imaging approach in which certain
elements of the problem are parameterized as differentiable. This enables the solving
of inverse problems through numerical optimization, neural networks, or a blend of
both [33]. As illustrated in Fig. 2.10, differentiable imaging models involve extra
parameters of the encoding system compared with conventional computational imaging
systems presented in Fig. 2.1. These optimizable parameters in imaging systems
improve reconstruction quantity and can be used for further improvement or design
of imaging systems. In the following sections, we will explore the core concept of
differentiable imaging — differentiable programming and review related research in
this field.

Encoding 𝑦 = 𝑓(𝑥, 𝜃) Decoding 𝑓−1(𝑥, 𝜃)

object imaging deviceimaging devicesource sensor

VNA

measurements processing restore

Feedback parameters 𝜽

Figure 2.10: A schematic of a differentiable imaging system includes both encoding
and decoding processes, integrating an additional parameter 𝜃 specific to the imaging
system. This parameter can also provide feedback to further improve the imaging
system.
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2.3.1 Differentiable programming

Thanks to the explosion of deep learning techniques, differentiable programming
[34] has rapidly developed in recent years. Typical differentiable programming, as
graphically illustrated in Fig. 2.11, is composed of 1) a computation graph, 2) an
objective function, 3) a computation of the derivatives of the objective function with
automatic differentiation, and 4) a gradient-based optimization.

Figure 2.11: A pipeline of a general differentiable programming (from [33]).

To utilize differentiable programming in specific fields, the process begins with
constructing a forward computation graph, incorporating necessary physical and
mathematical knowledge. This computation graph is a combination of parameterized,
differentiable functions, methods, and models that handle the input and output.
Differentiation with respect to input parameters and subsequent updates according
to the objective function is achieved by computing the derivative of the entire graph.
This is done by aggregating the derivatives of basic operations (primitives) using the
chain rule for differentiation. The principle in terms of automatic differentiation (AD)
[35, 36] is that all numerical computations are fundamentally sequences of finite,
elementary operations, each with a known derivative.

Figure 2.12: Computation graph of the example function. (from [33])
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AD can be calculated in two ways, depending on the direction of derivative
computation when applying the chain rule: forward mode and backward mode.
Forward AD computes numerical derivatives by executing elementary derivative
operations simultaneously with the function’s evaluation, proceeding from input to
output. Conversely, backward AD relies on an expanded forward computational graph
to determine the derivatives by traversing the graph in reverse, from output to input.

Figure 2.13: AD examples by forward and backward mode, with 𝑦 = 𝑓 (𝑥1, 𝑥2) =
sin(𝑥1) + 𝑥1𝑥2 evaluated at (𝑥1, 𝑥2) = (2, 1) (from [33]) .

To better understand the AD, considering a simple function 𝑦 = 𝑓 (𝑥1, 𝑥2) =

sin(𝑥1) + 𝑥1𝑥2 , we will demonstrate how to evaluate the derivative 𝜕𝑦

𝜕𝑥1
at point

(𝑥1, 𝑥2) = (2, 1) using forward and backward mode, respectively. The computation
graph of this function is represented in Fig. 2.12. For computing the derivative of 𝑓 in
term of 𝑥1 by forward mode, we start by associating with each intermediate variable 𝑣𝑖
a derivative

𝑣̇𝑖 =
𝜕𝑣𝑖

𝜕𝑥1
. (2.4)

Evaluating the primal 𝑣𝑖 and their corresponding derivatives 𝑣̇𝑖 from top to bottom
gives us the final derivative of 𝑣̇3 =

𝜕𝑦

𝜕𝑥1
. In the general case, each forward pass of AD

is initialized by setting the derivative of one of the input variables 𝑥̇𝑖 to 1 and the rest to
zero. This approach allows a full derivative matrix for 𝑓 : R𝑛 → R𝑚 to be computed
in 𝑛 evaluations. It indicates that forward AD is an efficient and simple method for
calculating the derivatives of functions with a small number of input variables.

The backward mode is evaluated in reverse order, beginning at the end of the
forward primal trace evaluation and proceeding towards the top with an adjoin, as
illustrated in Fig. 2.13:

𝑣̄𝑖 =
𝜕𝑦 𝑗

𝜕𝑣𝑖
, (2.5)

in the backwardmode of automatic differentiation (AD), the process starts by initializing
𝑣̄3 = 𝑦̄ =

𝜕𝑦

𝜕𝑦
= 1 , indicating the derivative of the output variable with respect to itself.

From this point, derivatives such as 𝜕𝑦

𝜕𝑥1
and 𝜕𝑦

𝜕𝑥2
can be efficiently obtained in a single

reverse pass. This efficiency makes backward AD particularly suited for evaluating
the derivatives of functions with a few number of output variables, like gradient-based
optimization and deep learning applications.

This example illustrates the flexibility of AD in extending calculations to more
nodes, variables, and operations. When incorporating classical control flows, like if
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statements, the computational graph diverges into branches, with gradients calculated
only within the relevant branch. Consequently, AD enables derivative computation
for mathematical functions and general-purpose programming encompassing control
flows, loops, recursions, etc.

2.3.2 Existing work of differentiable imaging

Differentiable imaging offers significant potential in addressing complex imaging
challenges through its dual capacity for modeling and design within computational
imaging frameworks. This section gives a brief overview of how differentiable imaging
can be a pivotal solution for these issues.

Differentiable imaging facilities the joint design of imaging systems and algorithms,
enabling a compatible development process that accounts for both hardware capabilities
and software strategies. In diffractive snapshot hyperspectral imaging, co-design
methods for a single diffractive optical element (DOE) coupled with a data-driven
spectral reconstruction network were proposed to restore spectral information from
learned spectrally-varying point spread functions [13, 14], shown in Fig. 2.14.
Moreover, a broad range of imaging applications based on an optimizable DOE with
a differentiable simulator are realized, such as extended depth of field imaging [11],
super-resolution imaging [12], and high-dynamic-range imaging [15], which can
provide more insights into various computational imaging pipelines.

Figure 2.14: a) 3D profile of the fabricated DOE. b) Measured PSFs of the fabricated
DOE in the wavelength range from 420nm to 650nm in [13].

By incorporating differentiable programming, it becomes possible to model
system imperfections or misalignment, allowing for the simulation and adjustment of
various real-world factors that might adversely affect imaging quality. For instance, in
holographic display systems, a differentiable wave propagation model, when combined
with a parameterized neural network, can accurately learn and compensate for non-
idealities, significantly reducing the discrepancy between simulated and actual image
formation processes [37]. Furthermore, differentiable imaging is instrumental in
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system calibration, offering a systematic method to refine and optimize imaging
systems. By automatically adjusting parameters, it ensures the alignment of expected
and observed outcomes [38].

While most studies on differentiable imaging focus on the optical spectrum, only a
few works extend its application to the microwave range. This is challenging due to the
complexity of full-wave simulation methods used in microwave computational imaging
frameworks, which require advanced physical and mathematical understanding to
implement differentiable programming effectively. However, the submillimeter-wave
range offers a promising bridge, as many of the simulation theories applicable in
optics remain valid. To the best of my knowledge, this thesis firstly presents an effort
to apply differentiable imaging within the realm of frequency-diverse computational
imaging in the submillimeter-wave domain, which aims to jointly design the hologram
and reconstruction networks.

2.4 Reconstruction methods
Image reconstruction, also known as the decoding process, aims to reconstruct objects
from measurements. It primarily addresses the ill-condition inverse problem in
computational imaging frameworks. Numerical optimization and neural networks
are the two main techniques employed to address ill-condition inverse problems.
Numerical optimization typically begins with an analytical theoretical model 𝑓 that
closely represents the actual imaging system. The goal is then to determine 𝑥 by
minimizing a selected error metric that measures the discrepancy between the numerical
forward model’s predictions and the actual measurements. In contrast, data-driven
neural networks aim to learn the implicit representation parameters by minimizing
loss functions based on training datasets. This method aims to find out an inverse
mapping from measurements to the signal, expressed as 𝐺 learn(·) : 𝑦 → 𝑥. Recently,
neural networks have shown great potential to solve highly ill-condition problems in
imaging.

2.4.1 Numerical optimization

In a canonical mathematical formulation, classical image reconstruction can be
formulated as the solution of a linear equation from the measurement g to objects f,

g = Hf + n, (2.6)

where H is a compact forward operator, and n represents the additive system noise.
It is typically an ill-posed problem. Given the measurements g, general numerical
optimization methods usually reconstruct the object f by solving the following convex
problem:

min
f

1
2
| |Hf − g| |22 + 𝜆𝐽 (f), (2.7)

where 𝜆 is the hyper-parameter to weight the regularization term 𝐽 (f). The data fidelity
term guarantees consistency accords with the forward operator. The regularization
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term 𝐽 (f) incorporates the prior knowledge of one image (e.g., sparsity in a certain
domain). Half quadratic splitting (HQS) [39], alternating direction method of multi-
pliers (ADMM) [40], and iterative shrinkage/thresholding algorithm (ISTA) [41] are
commonly used optimization algorithms to solve above inverse problem.

Here, the ISTA algorithm with 𝑙1-regularization [41] is used to solve an inverse
problem through iterative closed-form derivation. Given H ∈ R𝑚×𝑛, g ∈ R𝑚, find
f ∈ R𝑛 by solving,

min
f∈R𝑛

1
2
| |Hf − g| |22 + 𝜆 | |f | |1, (2.8)

where the data fidelity term is a quadratic function which can be handled by gradient
descent in the form as,

fk+1 = min
𝑓

{︂ 1
2𝑡𝑘

| |f − (f𝑘 − 𝑡𝑘∇ 𝑓 (f𝑘 )) | |22
}︂
, (2.9)

where 𝑡𝑘 > 0 us a suitable stepsize, 𝑘 denotes iteration counter, 𝑓 (f) = 1
2 | |Hf − g| |22,

and ∇ 𝑓 (x𝑘 ) is gradient of 𝑓 with respect to f𝑘 which can be represented as,

∇ 𝑓 (f𝑘 ) = H𝑇 (Hf𝑘 − g). (2.10)

Then we introduce the 𝑙1-regularization term into equation (2.9) and let z =

f𝑘 − 𝑡𝑘∇ 𝑓 (f𝑘 ), the quadratic function is changed to

fk+1 = min
𝑓

{︂ 1
2𝑡𝑘

| |f − z| |22 + 𝜆 | |f | |1
}︂
. (2.11)

To find the minimum of z, we differentiate element-wise with respect to f and set
the result equal to zero as,

𝜑( 𝑓 , 𝑧) =
𝑛∑︁
𝑖=1

𝜆 | 𝑓𝑖 | +
1

2𝑡𝑘
( 𝑓𝑖 − 𝑧𝑖)2,

𝜕𝜑

𝜕 𝑓𝑖
= 𝜆sign( 𝑓𝑖) +

1
𝑡𝑘
( 𝑓𝑖 − 𝑧𝑖) = 0,

𝑧𝑖 = 𝜆sign( 𝑓𝑖) + 𝑓𝑖 =

{︄
𝑓𝑖 − 𝜆 𝑓𝑖 < 0,
𝑓𝑖 + 𝜆 𝑓𝑖 > 0.

(2.12)

Then we may obtain the following piecewise representation for 𝑥𝑖 in term of 𝑧𝑖,

𝑓𝑖 =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
𝑧𝑖 + 𝜆 𝑧𝑖 < −𝜆,
0 |𝑧𝑖 | ≤ 𝜆,
𝑧𝑖 − 𝜆 𝑧𝑖 > 𝜆.

(2.13)

In short, ISTA [41] solves the inverse problem by iterating between the following
update steps,

z𝑘+1 = f𝑘 − 𝑡𝑘H𝑇 (Hf𝑘 − g),
f𝑘+1 = sign(z𝑘+1) max( |z𝑘+1 | − 𝜆, 0).

(2.14)
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2.4.2 Neural network

Comparing to numerical optimization which needs to design closed-form with specific
H and regularization 𝐽 (f), neural network-based methods take an end-to-end approach
to solve the inverse problem by learning the inverse mapping from a dataset of
ground-truth images and their corresponding measurements {( 𝑓𝑛, 𝑔𝑛)}𝑁𝑛=1, which can
be expressed as,

𝐺 learn = min
𝐺 𝜃 ,𝜃∈Θ

𝑁∑︁
𝑛=1

L( 𝑓𝑛, 𝐺 learn(𝑔𝑛, 𝜃)) + J(𝜃), (2.15)

where Θ is the set of all possible parameters, L is the loss function that evaluates
the reconstruction quality from the measurements, J is a regularization term on the
parameters to prevent overfitting. As the training step is done, 𝐺 learn can be used to
reconstruct a new image from corresponding measurements.

Figure 2.15: An illustration of a typical CNN architecture (U-Net) with a loss function
used for training [42].

Neural network-based methods commonly used in computational imaging are
divided into convolution neural network (CNN), deep unrolling network (DUN), and
generative adversarial network (GAN). A standard CNN comprises convolutional,
pooling, activation, and transposed convolution layers. For demonstration, Fig. 2.15
shows a typical CNN architecture. Convolutional layers perform dot product operations
between kernels and feature maps. Pooling layers reduce the dimensionality of feature
maps, while activation layers introduce non-linearity. Transposed convolution layers
increase the size of feature maps. The weight refinement of CNN is achieved through
the back-propagation algorithm, beginning with the loss function. Recent successful
architectures of CNN include ResNet [43], DenseNet [44], and U-Net [42], which are
widely adapted as reconstruction methods in computational imaging [45]. However,
CNNs for reconstruction only use data pairs of ground-truth images and corresponding
measurements without incorporating prior knowledge of the forward physics process.
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It is challenging for a neural network to learn the inversion process from measurements
to images with limited data, leading to a lack of generalization ability.

Figure 2.16: An illustration of ISTA-Net [46]. Specifically, ISTA-Net is composed of
𝑁𝑝 phases, and each phase strictly corresponds to one iteration in ISTA.

Figure 2.17: The GAN framework for inverse imaging problems. Given an observed
measurement, the generator outputs a prediction for the output image, and the
discriminator determines whether its input was synthesized by the generator, or
comes from the training data.

To address issues associated with CNNs, deep unrolling networks (DUNs) are
proposed for solving inverse imaging problems. DUNs combine numerical optimization
with neural networks, unrolling each iterative step of numerical optimization into a
network layer. DUNs aim to efficiently utilize the advantages of these two paradigms,
embedding the forward operator within the network to maintain image consistency
with the measured data. For example, Yang et al. [47]. introduced ADMM-
CSNet, a deep architecture that unrolls the ADMM solver into iterative steps, with
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all parameters learned discriminatively through end-to-end training for compressed
sensing applications. Similarly, Zhang et al. [46] transformed ISTA into a deep
network, devising an effective approach for solving the proximal mapping with
nonlinear transformations. Fig. 2.16 depicts the ISTA-Net framework. It firstly
embeds the physics operator 𝐴 into the gradient descent step to ensure the consistency
between measurement and signal domain, then designs F (·) as a combination of
two linear convolutional layers separated by an activation function (ReLU) to learn
a richer representation for images. All cited studies illustrate the importance of
incorporating the physics prior into the deep learning network, significantly enhancing
its generalization capability and convergence performance.

Generative adversarial networks consist of two networks: a generator and a
discriminator. In computational imaging, the generator tries to learn a mapping
between the measurements and images, whereas the discriminator endeavors to
distinguish between the generator’s output and the actual data, illustrated in Fig. 2.17.
In other words, the discriminator is trained to distinguish between samples from the
data distribution and those generated by the generators, while the generator must fool
the discriminator. This training scheme allows GANs to learn the transformation
between probability densities of measurements and images. GANs have already been
used for inverse imaging problems, e.g., single-pixel imaging [48].
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3 End-to-end Optimization of Dispersive Hologram
with Back-end Neural Network

3.1 Mathematical theory of imaging model
Consider a frequency-diverse imaging system featuring a complex transmitting aperture
aligned along 𝑧-direction, fed by a single antenna source. The projected electric field
scatters off objects in the scene, and the same antenna captures the back-scattered
measurements. As depicted in Fig. 3.1, points on the aperture plane are denoted by
rA = (𝑥A, 𝑦A, 0), while rS = (𝑥S, 𝑦S, 𝑧S) represents points in the imaging scene. The
electric field propagates from the transmitting antenna (Tx) located at rT, first to the
aperture, then to the target planes, and finally back to the receiver antenna rR, situated
at the same location as rT.

Mathematical description of the proposed imaging system.

Rx/Tx

𝒓𝑅/𝒓𝑇

𝒓𝐴

𝑧

𝑥

𝑦
Aperture

Scene

𝒓𝑆

Figure 3.1: The geometry of the proposed imaging system.

The Tx antenna is approximated as a point source located at rT, represented by a
Dirac delta function IT(rT)𝛿(r−rT). The field distribution EA(rA) across the aperture
plane is given by,

EA(rA) = IT · TA(rA, rT), (3.1)
where TA(rA, rT) is the impulse response function describing the field at the aperture
plane rA due to the point source, encompassing all physical effects from the source to
the aperture.

The field distribution E0(rS) is computed by a convolution integral:

E0(rS) =
∫

S
EA(rA)

𝜕

𝜕𝑧
𝐺 (rS, rA)𝑑2rA, (3.2)

where 𝐺 (r1, r2) is scalar Green’s function and 𝜕
𝜕𝑧
𝐺 (rS, rA) denotes the parallel scalar

fields-to-fields propagator.
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The incident field from the aperture to the object-free region is described as a
solution of the Helmholtz equation in free space. In the context of imaging, the object
(region of interest) in an inhomogeneous medium is represented by a spatially varying
perturbation as follows:

∇2ET + 𝛽(rS)2ET = 0, (3.3)
where the total field ET is the sum of the incident field E0 and scattered field ES as

ET = E0 + ES, (3.4)

In the context of electromagnetic fields, disregarding the polarization effects, 𝛽(rS)
can be expressed as a scalar function representing the medium’s refractive index:

𝛽(rS) = 𝛽0𝑛(rS) = 𝛽0 [1 + 𝑛𝛿 (rS)], (3.5)

where 𝛽0 is the average wavenumber of the medium, and 𝑛(rS) is the refractive index,
given by,

𝑛(rS) =

√︄
𝜇(rS)𝜖 (rS)
𝜇0𝜖0

. (3.6)

where 𝑛𝛿 (rS) refers to the deviation from the average refractive index, and it is
presumed that this deviation has finite support, meaning 𝑛𝛿 (rS) is zero outside the
object of interest.

Extending the above equation and neglecting second-order terms in 𝑛𝛿, in accor-
dance with the first Born approximation (where 𝑛𝛿 ≪ 1), we arrive at:

∇2ET + 𝛽2
0ET = −2𝛽0𝑛𝛿 (rS)ET, (3.7)

in this equation, the term on the right-hand side characterizes our scene, which can
be reformulated as 𝑓 (rS) = 2𝛽2

0𝑛𝛿 (rS) symbolizing our estimated object function.
Furthermore, the propagation of the incident field E0 from the aperture to the scene
plane adheres to the Helmholtz equation in a vacuum, given by:

∇2E0 + 𝛽0E0 = 0. (3.8)

Similarly, the scattered field ES satisfies the wave equation as follows:

∇2ES + 𝛽0ES = − 𝑓 (rS)ES, (3.9)

which is obtained by substituting equation (3.3) and equation (3.4) into the equation
(3.7). To compute the back-scattered field distribution across the aperture, the scene
is conceptualized as two-dimensional sources, integrated with the source-to-field
propagator 𝐺 (rA, rS) through the principle of superposition:

ES(rA) = −
∫
𝑠

𝐺 (rA, rS) 𝑓 (rS)E0(rS)𝑑2rS, (3.10)

having determined the scattered field across the aperture, it is now feasible to compute
the measurement 𝑔, defined as the field at the detector:

𝑔 =

∫
S

ES𝑇A(rR, rA)𝑑2rA, (3.11)
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assuming that the field’s propagation into the antenna utilizes the same transfer function
𝑇𝐴 as the field’s emission from an antenna, in accordance with the reciprocity principle
of the transfer functions. Referring back to an earlier equation (3.1) and normalizing
the source to |𝐼 𝑓 | = 1, we derive:

EA(rA) = 𝑇A(rA, rf) = 𝑇A(rR, rA). (3.12)

Subsequently, by substituting the relevant equations (3.10) and (3.12) into the
equation (3.11) and reformulating the Green’s function,

𝐺 (rS, rA) =
𝜕

𝜕𝑧
𝐺 (rS, rA)𝐷−1(rS, rA), (3.13)

where 𝐷 (rS, rA) = 𝑧( 𝑗 𝛽0
𝑅

− 1
𝑅2 ) and 𝑅 = |rS − rA |. Then assigning the 𝐺 (rS, rA) to

the outside integration and rearranging the order of integration yield:

𝑔 = −
∫

S
𝑓 (rS)E0(rS)

[︂ ∫
S

𝜕

𝜕𝑧
𝐺 (rS, rA)EA(rA)𝐷−1(rS, rA)𝑑2rA

]︂
𝑑2rS,

= −
∫

S
𝑓 (rS)E0(rS)

[︂ ∫
𝑧

𝐸0(rS)𝐷−1(rS, rA)𝑑𝑧
]︂
𝑑2rA,

(3.14)

with the assumption of narrow field of view (𝑧 ≈ 𝑅), it becomes feasible to disregard
the comparatively negligible term 1

𝑅2 in the estimation of 𝐷−1(rS, rA), which can be
approximated as 𝑗 𝛽0. Consequently, the equation (3.14) transforms into:

𝑔 =
𝑗

𝛽0

∫
S
𝑓 (rS)E2

0(rS)𝑑2rS. (3.15)

Following the discretization of the scene and aperture, the measurement 𝑔 from
the equation (3.15) can be articulated as a summation:

𝑔 =
𝑗

𝛽0

∑︁
rS

E2
0(rS) 𝑓 (rS). (3.16)

For a frequency-diverse imaging system, equation (3.16) can be succinctly repre-
sented in the form of a matrix equation:

g = Hf + n, (3.17)

where g ∈ CM×1 symbolizes the back-scattered measurements received by the antenna,
the vector f ∈ CN×1 denotes the unknown reflectivity distribution of the object, the
matrix H ∈ CM×N represents the measurement matrix, which is constructed based
on the field distribution at the scene plane. Moreover, n ∈ CM×1 is the measurement
noise, modeled as a Gaussian distribution with zero mean, and its characteristics are
dictated by the system’s signal-to-noise ratio (SNR) level. The measurement matrix
dimensions 𝑀 and 𝑁 denote the number of diverse electric fields corresponding to
each frequency and the number of pixels discretizing the field and scene.
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3.2 Imaging components and propagators modeling
In this section, we investigate the interaction of the electric field within our frequency-
diverse imaging system, concentrating on two scenarios for modeling electric length.
The first involves free propagation of the wavefront through a medium, while the
second occurs as the wavefront traverses an optical instrument or component.

3.2.1 Mathematical models of imaging components

A. Gaussian Beam. To represent an mm-wave transceiver equipped with a horn
antenna, the electric field at the feed plane is modeled as a Gaussian beam:

Efeed(r 𝑓 ) = 𝑒
−( 𝑥2

𝜔2
𝑥

+ 𝑦2

𝜔2
𝑦

)
, (3.18)

here, 𝑟 𝑓 =
√︁
𝑥2 + 𝑦2 denotes the radius from the beam’s central axis and 𝜔𝑥 and 𝜔𝑦 are

the beam waist radius of x and y portions. In cases where the aperture radius greatly
exceeds the Gaussian beam’s waist (i.e., 𝜔0 ≪ 𝑅A), the beam approximates a point
source, spreading out to form a spherical wavefront akin to that from a point source.

B. 90◦ Off-axis Parabolic Mirror. The parabolic mirror can be treated as an ideal
quadratic focusing element with some approximations [49]. This phase delay is
modeled via a quadratic approximation to the spherical wave, related to the lens’s
focal length and coordinates:

𝑈l(𝑥, 𝑦) = 𝑃(𝑥, 𝑦)𝑒−
𝑘0
2 𝑓

(𝑥2+𝑦2)
, (3.19)

where 𝛽0 is the wavenumber and 𝑓 is the focal length. 𝑃(𝑥, 𝑦) = 𝑐𝑖𝑟𝑐(𝑅) is the common
pupil function. To better model the wave interaction with an off-axis parabolic mirror,
we use the physical-optics method mentioned in [6, 17] to obtain the field distributions
at the hologram plane.

C. Dispersive Phase Hologram. The phase modulation in a hologram stems
from its phase profile, a function of the varying height map ℎ(𝑥, 𝑦) of a transmissive
substrate:

𝜙(𝑥, 𝑦) = 2𝜋
𝜆
(√𝜖r, h − 1)ℎ(𝑥, 𝑦), (3.20)

where 𝜆 is the wavelengths and 𝜖r, h is the relative permittivity of the hologram material,
respectively. The total modulation for the incident electric field Ein on the hologram is
expressed as:

Ehol(𝑥, 𝑦) = Ein𝑒
− 1

2 𝑘0ℎ(𝑥,𝑦)𝛿h
√
𝜖r, h𝑒− 𝑗𝜙(𝑥,𝑦) , (3.21)

the first exponential term represents the losses due to the hologram’s thickness, and 𝛿h
is the material’s loss tangent.
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3.2.2 Mathematical models of optical propagation

For precise modeling of the electric field’s free-space propagation, we apply the
Rayleigh-Sommerfeld diffraction theory based on Fourier optics:

𝐸 (𝑥, 𝑦, 𝑧) =
∬

𝐸 (𝑥′, 𝑦′, 0) 𝑒
𝑗 𝑘0𝑟

′

𝑟′
𝑧

𝑟′
( 1
2𝜋𝑟′

+ 1
𝑗𝜆

)𝑑𝑥′𝑑𝑦′, (3.22)

where 𝑟′ =
√︁
(𝑥 − 𝑥′)2 + (𝑦 − 𝑦′)2 + 𝑧2, 𝜆 is the wavelength and 𝑘0 is the free space

wavenumber. The diffraction integral is reformulated into a convolution form using
the propagation kernel ℎ(𝑥, 𝑦, 𝑧) as follows:

𝐸 (𝑥, 𝑦, 𝑧) = 𝐸 (𝑥, 𝑦, 0) ∗ ℎ(𝑥, 𝑦, 𝑧), (3.23)

where the symbol ∗ denotes two-dimensional convolution over 𝑥 and 𝑦. The propagation
kernel is defined by:

ℎ(𝑥, 𝑦, 𝑧) = 𝑒 𝑗 𝑘0𝑟

𝑟

𝑧

𝑟
( 1
2𝜋𝑟

+ 1
𝑗𝜆

), (3.24)

where 𝑟 =
√︁
𝑥2 + 𝑦2 + 𝑧2.

𝑦

𝑥

𝑧
Source
Plane

Observation
PlaneSampling window

𝐸(𝑥, 𝑦, 0) 𝐸(𝑥, 𝑦, 𝑧)

Figure 3.2: Definition of the coordinate system and the geometry of the model.

Recognizing that convolution in the spatial domain equates to multiplication in the
frequency domain, the final wavefront field can be expressed as:

𝐺 ( 𝑓x, 𝑓y, 𝑧) = 𝐺 ( 𝑓x, 𝑓y, 0)𝐻 ( 𝑓x, 𝑓y, 𝑧). (3.25)

The angular spectrum𝐺 ( 𝑓𝑥 , 𝑓𝑦, 0), and the transfer function 𝐻 ( 𝑓𝑥 , 𝑓𝑦, 𝑧), are given
by:

𝐺 ( 𝑓x, 𝑓y, 0) =
∬

𝐸 (𝑥, 𝑦, 0)𝑒− 𝑗2𝜋( 𝑓x𝑥+ 𝑓y𝑦)𝑑𝑥𝑑𝑦

= F
{︁
𝐸 (𝑥, 𝑦, 0)

}︁
,

(3.26)
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and

𝐻 ( 𝑓x, 𝑓y, 𝑧) = 𝑒 [ 𝑗2𝜋
𝑧
𝜆

√
1−(𝜆 𝑓x)2−(𝜆 𝑓y)2] . (3.27)

As a result, the final wavefront is articulated as:

𝐸 (𝑥, 𝑦, 𝑧) = F −1{︁F {𝐸 (𝑥, 𝑦, 0)}[ 𝑓x, 𝑓y] · 𝐻 ( 𝑓x, 𝑓y, 𝑧)
}︁
[𝑥, 𝑦], (3.28)

this formulation is known as the angular spectrum method (ASM).
For the formalization of our forward imaging model, it is represented in matrix

form:
g = Hf + n, (3.29)

here, H is proportional to E2
𝑜 (rS), where E𝑜 (rS) denotes the electric field at the scene

plane, and n represents the noise added into this system. This field is computed
using the ASM, taking into account all imaging components. Figure 3.3 depicts the
configuration of our system and the varied field distribution at the scene plane.
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Figure 3.3: Frequency-diverse imaging system and simulated E-field of the scene.
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3.3 Differentiable optimization framework
In subsections 3.1 and 3.2, a wave-based image formation paradigm based on Fourier
optics is delineated. This model incorporates diffraction and the effects of various
elements when imaging an object. Subsequent sections will elucidate the methodology
for incorporating this model into contemporary deep learning frameworks, such
as PyTorch, ensuring the differentiability of both forward and inverse models. The
capacity for differentiability within our optimization schema facilitates the combination
of physical principles with neural network architectures, thereby offering potential
solutions to issues arising from incomplete and noisy data. The primary objective
of this framework is to computationally identify the optimal system design and
corresponding deconvolution algorithms for the imaging task.

Image Dataset

Noise

Sensing Encoder

ℒ

Forward
Backward

Computational Decoder

Loss

Reconstruction Network 𝐺(: , Θ)Hologram Measurement
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Figure 3.4: The proposed end-to-end differentiable pipeline.

We have formulated a framework called NeuralHolo aimed at optimizing a
frequency-diverse imaging system equipped with a phase hologram in Pytorch,
utilizing stochastic gradient techniques. The hologram’s height map ℎ(𝑥, 𝑦) and the
parameters Θ of the network 𝐺 (·;Θ) are designated as optimization variables. Each
forward pass involves simulating the measurement matrix H in accordance with the
wave-based image formation model as per equation (3.29). This simulated matrix is
subsequently applied to a set of images, augmented by noise 𝑛 to simulate measurement
uncertainty. Image reconstruction employs a post-processing algorithm, such as a
neural network, utilizing the image formation model H:

f̂ = 𝐺 (g;Θ) with g = Hf + n. (3.30)

A differentiable loss function L such as mean absolute error in relation to the
ground-truth image, is then defined on the reconstructed images:

L =
1
𝐾

∑︁
| |f̂ − f | |1, (3.31)

where 𝐾 represents the total pixel count in the images.
During the backward pass, the error is initially back-propagated to the reconstruction

network for updating the parameters Θ:

Θ̂
(𝑛)

= Θ(𝑛−1) − 𝛼( 𝜕L
𝜕Θ

)𝑇L, (3.32)
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subsequently, it is conveyed to the simulation of the measurement matrix, traversing
through the diffraction process, to the phase hologram itself, employing the chain rule:

ℎ̂
(𝑛)

= ℎ(𝑛−1) − 𝛽( 𝜕L
𝜕ℎ

)𝑇L,

= ℎ(𝑛−1) − 𝛽( 𝜕L
𝜕Θ(𝑛−1) ·

𝜕Θ(𝑛−1)

𝜕g
· 𝜕g
𝜕H

· 𝜕H
𝜕ℎ

)𝑇L.
(3.33)

In this process, 𝛼 and 𝛽 signify the learning rates for the neural network and the
hologram’s height map, respectively, in the 𝑛-th iteration.

3.3.1 Optimization of heavily-quantized hologram

Currently, most differentiable frameworks typically require continuous values for
the hologram phase profile optimization. However, these methods do not consider
the physical quantization in hologram fabrication due to the discrete material layers
produced with 3D printers, resulting in a mismatch between imaging hardware and
reconstruction algorithms in real-world applications. Therefore, we need to develop
an approach that optimizes a heavily-quantized hologram, aligning it with specific
manufacturing requisites.

A pivotal challenge is the formulation of a differentiable quantization operator
𝑞 and its integration into the optimization workflow. To address this, we introduce
surrogate gradient methods, drawing inspiration from the realm of quantized neural
networks [50]. In this approach, the forward pass employs the precise quantization
operator 𝑞, whereas the back-propagation pass leverages the gradient of a differentiable
proxy function 𝑞̂. This adaptation enables the modification of the gradient descent
process for the hologram height map, as delineated in equation (3.33):

Φ̂
(𝑛)

= Φ(𝑛−1) − 𝛽( 𝜕L
𝜕Θ(𝑛−1) ·

𝜕Θ(𝑛−1)

𝜕g
· 𝜕g
𝜕H

· 𝜕H
𝜕𝑞

· 𝜕𝑞̂
𝜕Φ

)𝑇L. (3.34)

The quantization operator 𝑞 can be defined as:

𝑞 : R𝑀×𝑁 → Q𝑀×𝑁 , 𝜙 → 𝑞(𝜙) = ΠQ(𝜙), (3.35)

where Π represents the projection operation, which aligns continuous phase values
with their nearest counterparts within a predetermined quantization set 𝑄. Following
optimization, the phase map is then converted into a height map using equation (3.20).

Our differentiable proxy function utilizes the Gumbel-softmax method [51, 52],
incorporating a continuous relaxation of categorical variables. This method is
mathematically represented as:

𝑞̂(Φ) =
𝐿∑︁

l=1
Ql · Gl(score(Φ,Q)),

Gl(𝑧) =
exp ((𝑧l + 𝑔l)/𝜏)∑︁𝐿
l=1 exp ((𝑧l + 𝑔l)/𝜏)

,

scorel(Φ,Q) = 𝜎(𝑤 · 𝛿(Φ,Ql)) (1 − 𝜎(𝑤 · 𝛿(Φ,Ql))).

(3.36)
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here 𝑔l ∽ Gumbel(0, 1) denotes Gumbel noise for each category 𝑙 = 1, . . . , 𝐿, which
correspond to quantized phase levels. 𝜎 is a sigmoid function, 𝛿 signifies the signed
value difference, and 𝑤 is a scale factor.

Three parameters are crucial during training: the temperature parameter of
Softmax 𝜏, the width parameter 𝑤, which corresponds to the interval of discrete levels,
corresponding to the interval of discrete levels, and a scale factor applied to the score
function.

3.3.2 Reconstruction algorithm

The simulated reflection measurement was mapped into an image through a deconvo-
lution neural network (DCNN). Here, we just use a very simple and lightweight NN,
which consists of six deconvolution blocks to transform the 1D spectrum reflection to
128× 128 reflectivity map of the target. Each block contains a transposed convolution,
batch-normalization, ReLU, and dropout layer. This provides a baseline to check the
feasibility of the network for the proposed approach. The architecture of the used
DCNN is shown in Fig. 3.5.

D-Conv Block D-Conv Block

4x4 Transposed
Conv

BatchNorm2d

ReLU

Dropout

D-Conv Block

4x4 Transposed
Conv

BatchNorm2d

ReLU

Dropout

3x3 Conv

Sigmoid
1 × 128 × 128

512 × 2 × 2
256 × 4 × 4

500 × 1 × 1

Figure 3.5: The architecture of proposed DCNN. The last block contains a 3 × 3
convolution and a sigmoid function to set the range of reflectivity map in [0, 1].

We utilize two loss functions to optimize the quality of reconstruction results:
mean absolute error (MAE) and dice loss [53], which can be expressed as,

Ltotal = 𝛼 · Lmae + (1 − 𝛼) · Ldice,

Lmae =
1
𝐾

∑︁
| |f̂ − f | |1,

Ldice = 1 − 2 ·∑︁(f̂ · f) + 𝑠∑︁
f̂2 +∑︁

f2 + 𝑠
,

(3.37)

where 𝛼 is the weighted coefficient of each loss function and here we set it to 0.8 for
better performance and 𝑠 is the smoothing term to stabilize the loss calculation.
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3.3.3 Overview of framework and optimization workflow

Figure 3.6: End-to-end design workflow overview. 1) Pipeline construction. The
design configuration automatically generates the entire end-to-end pipeline, including
the imaging setup and training parameters. 2) End-to-end training with the parameter
of physical hardware and reconstruction neural network in a data-driven manner. 3)
The trained hardware model is saved to create a standard file for 3D printing. 4)
Physical deployment for further imaging experiments.

NeuralHolo framework (Table.1) consists of three major components to simplify
and accelerate the process of end-to-end design, including a) versatile programming
modules for precise physics modeling, b) forward computational model for mapping the
target to measurement with customized noise, c) various neural network architecture
modules for image reconstruction.

The electric field is the most important feature for precise physics modeling.
To ensure flexibility and extensibility in our framework, we introduced a datatype
for electric fields that stores spectral and spatial information, along with an easy
visualization method. The ElectricField class contains a 4-dimensional tensor, with
each dimension corresponding to the field components in the xy plane, the wavelength
information, and the spatial profile. Both phase and amplitude distributions can be
visualized for each predefined wavelength using built-in methods. To model the entire
imaging physics process, mathematical modeling modules for various components are
required - 1) source beam modeling with flexible wavelength settings and beam profiles
such as Gaussian beam and plane wave. 2) precise light diffraction, which includes
two categories: the angular spectrum method (ASM) and the Rayleigh-Sommerfeld
convolution method (RSC), to handle accurate wave propagation simulation under
different distance limitations [54], 3) quantized hologram with an optimizable profile
and flexible discrete levels, and 4) general elements such as collimated lenses and
amplitude apertures with different shapes. It should be noted that all these modules
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Table 1: Overview of the NeuralHolo modules and partial front-end APIs.

Modules for physics modeling
Class Description

ElectricField
Define a datatype for scalar or vector electric fields using a 4D tensor,
including spectrum information and physical size.

Gaussian_beam
Define a Gaussian beam with a customized beam waist and wavelengths,
returning an ElectricField datatype.

Plane_wave
Define a plane wave with customized wavelengths, returning an
ElectricField datatype.

ASM_prop
Compute the scalar diffraction fields for a given ElectricField using the
angular spectrum method with a specific propagation distance.

RSC_prop
Compute the scalar diffraction fields for a given ElectricField using the
Rayleigh-Sommerfeld convolution method.

QuantizedHologram
Define a quantized hologram with an optimizable profile and flexible
discrete levels, and compute the modulated electric fields.

ThinLensElement Transparent lens of variable size and focal length.
ApertureElement Rectangular or circular mask of variable size.

Forward computational model
Physics Contain the imaging forward operator, noise model and sensor model.

Reconstruction algorithms
Network Customized neural network to reconstruct targets from simulated measurements.

are developed with the ElectricField class to process complex fields.
After building the precise physics model of the system, the forward computational

model that maps the target information to measurements is utilized based on a specific
imaging formation model, such as Eq. 3.29. This Physics class contains the imaging
forward operator H, a noise model n, and a sensor model 𝜂(·). In our case, the noise
model is Gaussian noise, and the sensor model is identity mapping. The imaging
forward operator H based on the system’s physics model and specific imaging formation
model, which allows for accurate mapping between the object f and the measurement
g, considering system noise. Finally, the simulated measurements from the Physics
class are used as inputs for the neural network to reconstruct the corresponding
target images. The NeuralHolo framework is built on the conventional automatic
differentiation engine PyTorch, allowing for end-to-end design of both the hologram
and neural network with GPU acceleration.

Fig. 3.6 shows the end-to-end workflow of the proposed computational imaging
system. Using the user-defined design configuration, the entire pipeline is automatically
generated in NeuralHolo. This includes imaging components, propagation distance,
simulation unit size, and optimized parameters such as the hologram profile and neural
network. Then the entire pipeline is trained end-to-end with a specific dataset to find the
optimal hologram pattern and corresponding reconstruction neural network. Finally, the
optimized hologram profile is converted to standard 3D printing files for manufacturing
and further imaging experiments. The code of NeuralHolo framework will be released at
https://version.aalto.fi/gitlab/shaos3/NeuralDispersiveHologram.
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4 Synthetic Simulations
This section conducts synthetic simulations to evaluate the effectiveness of our
approach. The following parts describe the datasets and hyper-parameters used in
this synthetic simulation, the comparison of different design parameters, and the
performance evaluation of different holograms. Finally, the hologram prototypes
chosen for manufacturing are introduced.

4.1 Dataset and hyper-parameters
In the simulation experiment, we chose the classic dataset Extended MNIST (EMNIST)
to build our target dataset. This dataset consists of 112,800 training images and 18,800
test images, including both handwritten numbers and letters, each of size 28 × 28.
According to the needs of demanding experiments, we modify the initial image size to
200 × 200 and regard it as an image that is composed of multiple scattering points
with random values between (0, 1) scattering coefficients. The neural network input is
the simulated reflection measurement of the target scene based on our differentiable
physics imaging process proposed in the previous section.

The parameters of the simulated system are shown in Table 2. The operation
bandwidth of our system is 220 - 330 GHz, and the frequency sampling interval is 0.2
GHz. The setup is fed by Pickett-Potter horn antennas, and radiation is collimated by
a parabolic mirror with a 0.127 m effective focal length. The distance of the imaging
plane between the scene and the hologram is 300 mm, and the resolution of each
frequency pattern and field of view is 200 × 200 with a 1 mm interval size. The
measurement matrix 𝐻 is 550 × (200 × 200). The hologram uses the high-temperature
resin with relative dielectric permittivity of 𝜖𝑟 = 2.66 + 𝑗0.03 at 300 GHz [55], and its
aperture size is 80 mm × 80 mm with 2 mm pixel size and 5 discrete levels. Each
pixel in the hologram is an optimizable parameter during the training process.

Table 2: Main parameters of simulation imaging system.

Parameters Values
Operation bandwidth 220 ∼ 330 GHz
Frequency sampling interval 0.2 GHz
Distance of imaging plane 300 mm
Simulation resolution 200 × 200 mm
Region of interest 128 × 128 mm
Sampling interval 1 mm
Hologram’s dielectric permittivity 2.66 + 𝑗0.03
Hologram’s pixel size 1 × 1 mm
Hologram’s discrete level 5
Hologram’s aperture size 80 × 80 mm

The phase map of the hologram and the reconstruction NN are trained in an
end-to-end fashion. We train the whole model for 400 epochs with a batch size of
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64 using the stochastic gradient method with the AdamW optimizer [56]. The initial
learning rates for the hologram and neural network are 0.02 and 0.001, respectively,
with decay rates of 99.5 % for each epoch. Peak signal-to-noise ratio (PSNR) is used
to evaluate the reconstructed imaging quality, which is defined as

PSNR = 10 log10

(︂ MAX2
f

MSE(f, f̂)

)︂
, (4.1)

where MAXf is the maximum pixel value of the ground truth images, usually 255 or 1
for unnormalized or normalized images, MSE is the mean squared error between the
label and reconstruction image. All simulation experiments are built on the Triton
high-performance computing cluster at Aalto University with NVIDIA Tesla V100
GPUs and implemented by PyTorch.

4.2 Simulation results
4.2.1 E-field distribution on the imaging plane

The E-field distribution modulated by the hologram at the imaging plane is crucial for
the proposed imaging system, as it directly correlates with the scattering coefficients
of the scene target. In this section, we firstly demonstrate the 2-D height map of
holograms and then compare the E-field distributions from optimized, randomly
generated, and previously proposed holograms as detailed in [16], which are shown in
Fig. 4.1 and 4.2, respectively.

Figure 4.1: The height map of a) optimized and b) previous holograms.

From Fig. 4.2, it is evident that the optimized hologram achieves broader amplitude
distributions, allowing for most of the reflected energy to be utilized in encoding scene
information from a large field of view (FoV). Additionally, the optimized hologram
tends to flatten the amplitude distribution in the region of interest and maintain diversity
across all frequency ranges. In contrast, randomly generated holograms lack this
property. These characteristics enhance the system’s ability to encode information in
the spatial domain and improve efficiency in the frequency domain.
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a) E-fields from an optimized hologram.

b) E-fields from a randomly-generated hologram.

c) E-fields from the previously-proposed hologram.

Figure 4.2: Visualization of E-field distributions corresponding to a) 220, b) 260,
and c) 300GHz.

Compared to the previously proposed hologram, which employs a quasi-random
approach with a specific design frequency that does not have the ability of phase
modulation in each pixel, this method is less effective. The non-iterative nature of the
earlier method makes it difficult to get the hologram in a single attempt. Consequently,
most of the energy still concentrates in the center area in this design, leading to weaker
capabilities in capturing and utilizing energy from wider angles.

4.2.2 Frequency diversity

The frequency diversity of a hologram refers to the lack of correlation in the spatial field
distribution in the RoI across operation frequencies. More similar illumination patterns
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at various frequencies result in a diminishing of the overall information extractable
from the measurements. In this context, we employed two different metrics to evaluate
the frequency diversity of the measurement matrix: singular value decomposition
(SVD) and the correlation coefficient. To fairly compare the performance of different
holograms, we set the pixel size and discrete levels of the optimized hologram to 1
mm and 5, which is the same as the previously proposed hologram.

The SVD is a mathematical tool used to assess the diversity of measurement matrix
produced by holograms. For the measurement matrix H ∈ C, the definition of SVD is,

HM×N = UM×NΣM×NV∗
M×N, (4.2)

where U and V denote complex unitary matrices, (·)∗ is conjugate transpose of a
matrix, and Σ is a rectangular diagonal matrix with non-negative real numbers on the
diagonal 𝜎1, 𝜎2, . . . , 𝜎𝑚 in descending order. The diversity of field distributions can
be assessed by examining the decay rate of the singular value spectrum. A rapidly
decreasing spectrum implies a high correlation between measurements, reflecting low
diversity. Conversely, a flat spectrum signifies high diversity among the measurements.
Fig. 4.3 shows the normalized singular value spectrum for various holograms across
the frequency bands. Both the optimized and randomly generated holograms exhibit
better frequency diversity compared to the previously proposed one, as our new
approach allows for more detailed hologram profiles. Additionally, the optimized
hologram demonstrates a slower decay in its singular value spectrum compared to the
randomly generated one, showing the effectiveness of our optimization method.

a) b)

Figure 4.3: a)Normalized singular value comparison of three hologram designs. b)
The zoomed-in window presents the difference in the initial decay of singular values.

Additionally, the correlation coefficient quantifies the linear dependence between
the measurement matrix’s responses at two different frequencies. This coefficient
is computed using the complex-valued field vectors, which include the electric field
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values at all sampling points within RoI. The definition of correlation coefficient of
two electric field patterns is,

𝜌(𝐻𝑛, 𝐻𝑚) =
|︁|︁|︁cov(𝐻𝑛, 𝐻𝑚)
𝜎𝐻𝑛

𝜎𝐻𝑚

|︁|︁|︁, (4.3)

where 𝐻𝑛 and𝐻𝑚 are complex-valued vectors of 𝑛-th and𝑚-th row of the measurement
matrix, which is proportional to the square of the corresponding electric field at all
sampling points in the RoI, respectively. 𝜎𝐻𝑛

and𝜎𝐻𝑚
are the standard deviations of𝐻𝑛

and𝐻𝑚 andcov(𝐻𝑛, 𝐻𝑚) is the covariance of𝐻𝑛 and𝐻𝑚. To effectively demonstrate the
correlation between various frequency points, the correlation coefficients are presented
as 2-D surface plots, shown in Fig. 4.4. In these plots, the x-axis and y-axis represent
the frequencies being compared, and the absolute value of the correlation coefficient
between the fields at these frequencies fills the plot. A correlation coefficient of 1
denotes perfect linear dependence, whereas a value of 0 indicates no linear relationship
between the two vectors. Low correlation coefficient values of the unity diagonal in
the surface plots suggest higher frequency diversity in the field patterns, while values
approaching 1 imply lower diversity. Fig. 4.4 shows the correlation coefficient plots of
the simulated measurement matrix. From Fig. 4.4, we observe some counter-intuitive
results that both previously proposed and randomly generated holograms show lower
correlation than optimized hologram. The yellow diagonals are thinner than that of
the optimized hologram and also exhibit faster decay away from the diagonal, more
visible in the cross-section in Fig.4.4 (d)-(f). The contradictory results from SVD
and correlation coefficients indicate these two methods may not fully represent the
effectiveness of our optimized hologram.

It is important to note that our method jointly optimizes the hologram concerning
the output of reconstruction results rather than using some proxy metrics such as
SVD and correlation coefficient. Therefore, training the same reconstruction neural
network on the same dataset with different types of holograms and comparing the
final reconstruction results could be a better way to evaluate the performance of
the proposed method. Table 3 shows the PSNR values on the EMNSIT test dataset
of different holograms with the same trained reconstruction NN. The end-to-end
optimized hologram has an improvement of 0.32 dB compared to the previously
proposed hologram. However, the randomly generated hologram suffers from the
lower reconstruction results, which only has 13.60 dB in PSNR. It indicates that this
randomly generated hologram can not efficiently encode the target information into
the measurements even if it has a slower decay of the SVD curve and lower correlation
coefficients shown in Fig.4.3 and 4.4.

To better illustrate the optimization process of our proposed method, we visualize
the loss curves for these holograms on the validation dataset in Fig. 4.5. Comparing
the loss curves of the previously proposed hologram and the optimized hologram,
we observe that the loss values for the optimized hologram are initially higher but
show a quicker decline before the 50-th epoch. But after the 50-th epoch, the loss
curve of the previously proposed hologram decreases more slowly than that of the
optimized hologram, indicating that our proposed end-to-end optimization framework
can find a more optimal hologram and yield superior results. Furthermore, based
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a) b) c)

d) e) f)

Figure 4.4: a)-c) Correlation coefficients of frequency-diverse field patterns at
220–330 GHz. a) previously proposed hologram, b) randomly-generated hologram c)
optimized hologram. d)-f) Cross sections of correlation coefficient plots at 275 GHz
corresponding to three different holograms.

on the comparison of reconstruction results and E-field distributions shown in Fig.
4.2, we can observe some similar properties between the previously proposed and
end-to-end optimized holograms. Both E-field distributions from two holograms are
more concentrated in the region of interest defined in Table 2, which indicates high
efficiency to encode information in this area.

Table 3: Quantitative comparison of the estimation results on EMNIST dataset among
three different holograms.

Hologram type Pixel size Discrete level PSNR (dB) ↑
previously proposed 1 mm 5 15.57
randomly generated 1 mm 5 13.60
end-to-end optimized 1 mm 5 15.89

4.2.3 Reconstruction results on test dataset

To evaluate the imaging performance of our proposed method, we simulate the imaging
process as described in section 3.1. This involves obtaining measurements of a scene
at the imaging plane and applying the deep learning algorithm outlined in section
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a) loss curves b) PSNR curves

Figure 4.5: Comparison of a) loss curves and b) PSNR curves with different hologram
design methods.

3.3.2 to reconstruct the target. Fig. 4.6 presents the reconstruction results from the
MNIST test dataset.

The reconstruction results demonstrate that the proposed algorithm can successfully
rebuild various target scenes from the 1D measurement. Specifically, the algorithm
effectively recovers targets with different rotations, and it can also restore targets of
various sizes and shapes. These capabilities indicate that our hologram can generate
diverse field distributions, encoding substantial information into the 1D measurement
and allowing the algorithm to effectively recover the target information from these
measurements. However, the reconstruction results reveal some information loss, such
as incorrect amplitude prediction at the edges of the field of view. This issue arises
because less energy is distributed to the edges of the field distribution at the imaging
plane, resulting in reduced information encoding at the edges.

4.2.4 Robustness for manufacturing uncertainty

Although high manufacturing precision is achievable using Formlabs’ 3D printers
to design hologram profiles, perfectly replicating the simulated holograms is still
impossible. To assess the robustness of the proposed hologram design approach against
manufacturing uncertainties, we introduce uniform noise U with various tolerances 𝑢,
denoted as U ∈ [−𝑢, 𝑢], to the height map of the designed hologram. This simulation
of fabrication noise allows us to evaluate the reconstruction quality of the algorithm.

In Figure 4.7, we present the designed hologram with various manufacturing
tolerances of 𝑢=100um and 𝑢=200um, respectively. Given that the layer thickness
resolution for Formlabs’ 3D printers is 25 𝜇m, which is significantly smaller than
these tolerances. It is notable that our algorithm can still correctly reconstruct the
target even with the higher manufacturing tolerance of 𝑢=200 𝜇m. Although the
simulated measurements vary slightly, they maintain the overall trend across different
tolerances, demonstrating the robustness of our hologram design against manufacturing
uncertainties.
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Figure 4.6: The visual comparison of the reconstruction results is displayed as
follows: The first column shows the normalized simulated measurement used as the
input for the neural network (NN). The second and third columns represent the NN’s
predictions and the ground truth, respectively. The last column illustrates the absolute
error between the prediction and the ground truth.

4.2.5 Generalization of reconstruction algorithm

To verify the generalization capability of our proposed algorithm, we tested it on
geometries of various shapes and sizes that were not included in the training or testing
datasets. Fig. 4.8 shows the reconstruction results for targets that are outside of the
EMNIST dataset commonly used. It is evident that our algorithm accurately predicts
the location of each target, regardless of their sizes and shapes, demonstrating that
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a) With manufacturing tolerance 𝑢 = 100 𝜇m

b) With manufacturing tolerance 𝑢 = 200 𝜇m

c) With manufacturing tolerance 𝑢 = 100 𝜇m

d) With manufacturing tolerance 𝑢 = 200 𝜇m

Figure 4.7: The visual comparison of the reconstruction results with different
manufacturing tolerances.

our optimized system can encode information into 1D measurements from general
targets that it has never seen before. However, accurately recovering the exact size
and shape remains challenging, highlighting some limitations of our algorithm. These
limitations could potentially be addressed by utilizing a larger dataset featuring a more
diverse range of target shapes and sizes.
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Figure 4.8: The visual comparison of the reconstruction results for targets that are
outside the dataset distribution.
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4.3 Comparison of design parameters
In this section, we examine the impact of design parameters on the hologram structure.
These parameters include the quantized discrete levels and pixel size of the hologram.
This study aims to provide a fundamental understanding of how these design parameters
affect hologram properties, enabling the choice of an optimal balance between
performance and manufacturing complexity.

Table 4: Quantitative comparison of the reconstruction results on EMNIST dataset
with different design parameters

Aperture size Pixel size Levels PSNR ↑
80 × 80 mm 2 mm 3 13.78
80 × 80 mm 1 mm 3 15.03
80 × 80 mm 2 mm 4 14.05
80 × 80 mm 1 mm 4 15.39
80 × 80 mm 2 mm 5 14.07
80 × 80 mm 1 mm 5 15.89
80 × 80 mm 2 mm 6 14.28
80 × 80 mm 1 mm 6 16.99

Table 4 displays the impact of various design parameters on the final reconstruction
results for the EMNIST dataset. It shows that the PSNR increases with more discrete
levels, indicating that the hologram has a greater capability to modulate the field
distributions across the illumination frequency band. Similarly, the trend in pixel size
demonstrates that smaller pixels correspond to a greater ability for phase modulation,
which in turn improves the final results. Fig. 4.9 shows the normalized singular values
for different design parameters. It reveals that the singular values become flatter with
an increase in discrete levels and a decrease in the pixel size of the hologram.

Figure 4.9: The normalized singular values for different design parameters.
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Figure 4.10: The impact of various parameters on the simulated efficiency of the
hologram. The upper blue line shows the efficiency of the previous hologram using
the material of Rexolite 1422 (𝜖𝑟 = 2.53, tan 𝛿 = 0.0005).

The power efficiency of a hologram is defined as the ratio of the power within
the RoI with the hologram to the power incident on the hologram. Fig. 4.10 depicts
the influence of various design parameters on the hologram’s efficiency across its
operation frequency. The line in blue in Fig. 4.10 represents the efficiency of a
previously designed hologram, which maintains an overall efficiency above 0.8. The
relatively high efficiency of this hologram is attributed to its smoother surface profile,
which minimizes diffraction effects. Additionally, the difference in materials used
for the two types of holograms, with loss tangents of 0.0005 and 0.03 respectively,
also contributes to the higher efficiency. This figure also shows a clear decrease in
efficiency as the pixel size of the hologram decreases. The efficiency of optimized
holograms with a 2 mm pixel size remains above 0.3, whereas those with a 1 mm
pixel size fall below 0.3. The low efficiency of the optimized holograms is due to
the larger loss tangents of the materials used and the high diffraction effects, which
result from their detailed structures. These high diffraction effects make some energy
outside the region of interest, reducing efficiency. This phenomenon becomes evident
when comparing the efficiency of optimized holograms with varying pixel sizes.
Specifically, a hologram with a 1 mm pixel size, which introduces more detailed
structures and higher diffraction effects, shows a significant decrease in efficiency.

Considering the reconstruction results and power efficiency across different design
parameters, it is evident that a more detailed hologram profile correlates with enhanced
modulation capability, resulting in improved reconstruction outcomes. However, this
also leads to lower power efficiency due to increased diffraction effects. Therefore,
designing an optimized hologram that balances greater modulation ability with high
efficiency will be the focus of our future work. It is possible to achieve this goal by
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introducing an energy regularization term in the loss function, forcing most of the
energy to hit the region of interest during the optimization process.

4.4 Manufactured prototypes
The surface profiles of the designed holograms are depicted in Fig. 4.11. Both
holograms feature five discrete levels of thickness. Prototype 1 exhibits a more detailed
surface structure compared to Prototype 2. This difference in structure is primarily
due to the pixel sizes defined before the optimization process.

Both designs were manufactured using Formlabs’ 3D printer with high-temperature
resin. Fig. 4.11 includes a 2 mm substrate made of the same material, on which the
surface structure is printed. Four holes are placed at the corners for mounting in the
actual measurement setup. The x-y resolution and layer thickness of the 3D printer
are both 25 µm, which demonstrates the manufacturability of the two holograms. Two
manufactured holograms are presented in Fig. 4.12.

a) Prototype # 1 b) Prototype # 2

Figure 4.11: Surface profiles of holograms chosen for manufacturing. a) Designed
hologram with 1 mm pixel size and b) hologram with 2 mm pixel size.

Figure 4.12: Manufactured holograms used in measurements. Left is a hologram
with a 1 mm pixel size, and the right is that with a 2 mm pixel. Blue figures represent
zoom-in areas under a microscope.
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5 Physical Experiment
This section details the measurement setup and procedures, as well as the hologram
measurements. It presents the measured field patterns and frequency diversity for both
manufactured holograms across the operation frequency band, comparing these with
the simulated results. Finally, we will compare the measured reflected signals with the
simulated ones to verify the accuracy of the imaging system modeling.

5.1 Measurement setup
The 220-330 GHz measurement setup is shown in Fig. 5.1. It consists of submillimeter-
wave extension modules (Virginia Diodes WR3.4-VNAX) connected to a Keysight
N5225A PNA Microwave Network Analyzer, which serves as both a signal generator
and analyzer. The transceiver VNAX extension modules are coupled with a Pickett-
Potter horn antenna, which feeds into an off-axis parabolic (OAP) mirror to collimate
the beam. The OAP mirror has a diameter of 76.2 mm and an effective focal length of
127 mm. The distance from the hologram surface to the open-ended waveguide at
the receiver is 300 mm. An open-ended waveguide (OEWG) for the corresponding
frequency range is used as a probe antenna and is coupled to the VNAX receiver
module to perform x-y scanning in the measurement plane. Flat surfaces near the
measurement setup are covered with radar-absorbing material (RAM) to prevent
multipath propagation and unwanted reflections.

Before measurements, calibration is performed to align the VNAX transceiver
module and the horn antenna with the OAP mirror by scanning the field without the
hologram. The hologram is secured to its mount once the scanning plane shows
sufficient planarity. The setup components and the probe antenna at the scanning
area origin are aligned using a line laser. After calibration, the scanning plane area
is defined as 0.2 × 0.2 m2 with a sampling interval of 1 mm, resulting in 201 × 201
pixels.

Figure 5.1: Photography of the imaging setup at 220-330 GHz. 1) WR3.4-VNAX
transceiver; 2) Pickett-Potter horn antenna; 3) OAP mirror; 4) holograms; 5) OEWG
probe antenna connected with to WR3.4-VNAX receiver. 6) RAM
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5.2 Measurements
5.2.1 Field pattern

In this section, the field measurements will be visualized and analyzed, including the
collimated field at the aperture, the modulated fields after the holograms at a distance
of 6 mm, and the fields at the target plane. It is noted that the distance between the
hologram and the parabolic mirror was adjusted when scanning near the hologram
and at the target plane due to the limitations of the optical table and scanning setup.
The non-ideal effects of each component in this system, including the Gaussian beam
source and holograms, will also be discussed.

a)

b)

Figure 5.2: Measured collimated fields at a) 220 GHz and b) 300 GHz.

The collimated fields at the aperture plane were measured over an area of 80 ×
80 mm2 with a 1 mm step size, as shown in Fig. 5.2. It is evident that the Gaussian
beams are collimated after the parabolic mirror across the operational frequency band,
despite some calibration errors. Additionally, the beam waist radius in the x and y
directions becomes unequal with increasing frequency, as observed in the amplitude
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distributions of each field. To compare the simulated and realistic holograms and
understand their interaction with the incident field, the fields near the hologram’s
surface have been measured. Meanwhile, the measured collimated fields are used
to simulate transmission through the ideal (simulated) hologram. Using these fields
near the hologram, the propagated fields at 0.1 m and 0.3 m can be calculated using
the ASM and compared. Figs. 5.3 and 5.4 present the comparison for hologram #1
and #2 at 220 GHz and 300 GHz, respectively. It is evident that the fields at 6 mm
from both the simulated and realistic holograms produce similar field distributions at
both frequencies and distances. For example, circular curves around the field origin
and one maximum point can be observed for hologram #1 at both frequencies with
d=0.1 m and d=0.3 m. However, comparing the field patterns in Fig. 5.4, produced
by hologram #2 with a 2 mm pixel size, the field patterns from hologram #1 with
a 1 mm pixel size show more differences. This is because the detailed structures in
hologram #1 are comparable to or even smaller than the band wavelengths (1.36 mm
- 0.9 mm), making the scattering effect relatively significant along with the phase
modulation. Overall, the similarity between the simulated and measured fields near
the hologram and their ASM-computed field patterns at various distances indicates
that the 3D printing technique can be used to manufacture high-quantized holograms
with sufficient precision.

To explore the factors causing differences between the simulated and measured field
patterns, we compare the simulated fields, ASM-computed fields from measured fields
near realistic holograms, and measured fields in Fig. 5.5. It is important to note that the
measured fields near realistic holograms and at the target plane are obtained from two
configurations with the same components and calibration. The only difference is the
distance between the mirror and the hologram, which the distance for measuring fields
near the realistic hologram is shorter than that for measuring fields at the target plane.
Repeated installations occur due to the limitations of the optical table and scanning
setup in our lab, which prevent us from scanning the fields near the hologram and the
target plane simultaneously. From Fig. 5.5 a)-b), similarities between the simulated
fields and ASM-computed fields from measured fields near realistic holograms can be
observed. For example, a maxima point around the field origin at 220 GHz and circular
curves at the bottom edge at 300 GHz are distinguishable. Based on the discussion
related to Fig. 5.3 and 5.4, the modulation introduced by the hologram is sufficiently
accurate. Thus, a non-ideal Gaussian beam and misalignment between the antenna
and parabolic mirror are the main factors causing the discrepancies between the left
and middle plots in Fig. 5.5. This conclusion is further supported by comparing the
middle and right plots. The difference between these two measurements is the distance
between the parabolic mirror and the hologram. The effects of the non-ideal Gaussian
beam and the non-planarity of the collimated field can be neglected at a shorter distance
but become more pronounced at a longer distance. This makes the incident field on
the hologram deviate from being regarded as a plane wave and could significantly
affects the phase modulation of the designed hologram, leading to inconsistencies
between the simulated and measured field patterns at the target plane.

54



a) Measured collimated field with the simulated hologram #1.

b) Measured field near the hologram #1.

c) Measured collimated field with the simulated hologram #1.

d) Measured field near the hologram #1.

Figure 5.3: a) and c) present the amplitude patterns of the measured collimated fields
transmitting through the simulated hologram #1 at 6 mm, 0.1 m, and 0.3 m, computed
by ASM. b) and d) demonstrate the measured patterns near the realistic hologram #1
at 6 mm, with the field patterns at 0.1 m and 0.3 m computed by ASM. The FoVs
from left to right are 80 × 80, 100 × 100, 200 × 200 mm2, respectively.
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a) Measured collimated field with the simulated hologram #2.

b) Measured field near the hologram #2.

c) Measured collimated field with the simulated hologram #2.

d) Measured field near the hologram #2.

Figure 5.4: a) and c) present the amplitude patterns of the measured collimated fields
transmitting through the simulated hologram #2 at 6 mm, 0.1 m, and 0.3 m, computed
by ASM. b) and d) demonstrate the measured patterns near the realistic hologram #2
at 6 mm, with the field patterns at 0.1 m and 0.3 m computed by ASM. The FoVs
from left to right are 80 × 80, 100 × 100, 200 × 200 mm2, respectively.
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a) Hologram #1 at 220GHz

b) Hologram #1 at 300GHz

c) Hologram #2 at 220GHz

d) Hologram #2 at 300GHz

Figure 5.5: Comparison of simulated fields (left), ASM-computed fields from
measured fields near realistic holograms (middle), and measured fields (right) at the
target plane for hologram #1 and #2. The FoV is 200 × 200 mm2.

57



Figure 5.6: Measured electric field amplitude patterns from three designed holograms
with different frequencies. Hologram #1 and #2 have 1 mm and 2 mm pixel size,
respectively, and hologram #3 is from previous work.
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5.2.2 Frequency diversity

Fig. 5.7 shows the normalized singular value spectra of all measured and simulated
complex field patterns for the three holograms at 220-330 GHz, respectively. Similar
trends from measurements and simulations can be observed, but the value at which
the curves from measurements eventually flatten is higher than that from simulations.
This indicates less correlation and better frequency diversity between frequency
points in the measured data compared to the simulated data. One factor causing the
higher flattening value in the measured data could be manufacturing and measurement
uncertainties, such as non-ideal Gaussian beams and device-based phase and amplitude
instability. However, compared to the simulation results, the normalized singular value
of hologram #1 dropped slightly and is now close to that of hologram #3. In contrast,
hologram #2 demonstrates the greatest singular value curve among them.

Figure 5.7: Left: Normalized singular value spectra of 500 measured field patterns
for both holograms #1 and #2. Right: The majority of frequency points are cropped
for clarity.

Additionally, the correlation coefficients for measured and simulated fields are
shown in Fig. 5.8. The correlation coefficients demonstrate good agreement between
the measured and simulated data along the yellow diagonal, while the values from
the sidelobes exhibit a difference of ∼ 0.2, maintaining a similar trend. The yellow
diagonal of holograms #1 and #2, designed using the proposed method, is thinner
than that of hologram #3. This indicates that the holograms designed in this thesis
have lower correlation fields than the previous hologram. Moreover, the values for
hologram #2 quickly drop below 0.2, showcasing its superiority over the others.
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a) Hologram #1

b) Hologram #2

c) Hologram #3

Figure 5.8: Correlation coefficients of field patterns for holograms a) #1, b) #2, and c)
#3 at 220-330 GHz are shown. From left to right, the simulated correlation coefficient
matrix, measured correlation coefficient matrix, and cross sections are presented,
respectively.

60



5.3 Validation of imaging system model
5.3.1 Signal extraction via time-gating

For the proposed imaging system, the horn antenna receives not only the signal
reflected by the target but also multiple reflections between the hologram and the
horn antenna. Therefore, a time-gating operation needs to be applied to the raw
reflected signals to extract the desired signals. In Fig. 5.9, the raw 𝑆11 is first converted
to a time-series signal using the inverse Fast Fourier Transform (iFFT). From the
time domain signals in Fig. 5.9 c), two peaks (at around 3.34 ns and 6.68 ns) can
be observed, corresponding to multiple reflections from the incident surface of the
hologram. Given that the distance between the hologram and the imaging plane is
𝑑 = 0.3m, the arrival time, which also represents the peak of the time-gating window,
from the target can be computed as:

𝑡p = 3.34 ns +
2 ·

√︃
𝑑2 + 𝑟2

p

𝑐0
, (5.1)

where 𝑟p is the distance of the target from the center of the imaging plane, and 𝑐0 is the
speed of light. The width of the window can be expressed as [(1−Δ) ·𝑡p, (1+Δ) ·𝑡p] and
Δ is set to 0.15 in this experiment to avoid the overlap of the second reflection. After
the time gating, the time domain signals are converted back to 𝑆11 in the frequency
domain using the Fast Fourier Transform (FFT) to obtain the reflected signals from
the target.

Figure 5.9: The process of time gating. The red dotted line presents the calculated
time gating window, and two dotted circles denote the first and second reflections
between the hologram and horn antenna.
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5.3.2 Comparison of measured and simulated reflected signals

To verify the imaging model proposed in Section 3.1, we compared the directly
measured reflected signals with the simulated ones computed by the constructed
measurement matrix at the same position. In the experimental setup, a corner cube
with a diameter of 12.7 mm and 10 × 30 mm2 metallic patch are respectively fixed
to a 2-D translation stage and automatically scanned over a 200 × 200 mm2 imaging
plane. The corner cube was used instead of a 10 × 10 mm2 metallic patch because it
reflects more energy, improving the signal-noise-ratio of the reflected signals. The
receiver collects reflected signals from 21 × 21 different positions for both targets.
To establish the measurement matrix H, a near-field probe scans in a parallel plane
close to the hologram aperture [7]. The aperture fields over the operation frequency
are measured by this near-field scanning system, and the field distributions E0 at the
imaging plane can be extrapolated based on ASM. Finally, the H matrix is calculated
based on Eq. 3.16, and the corresponding simulated reflected signals are obtained by
multiplying the measurement matrix by the reflectivity map, which matches the size
and position of the target.

Figure 5.10: Simulated and measured 𝑆11 for hologram #1.
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Figure 5.11: Simulated and measured 𝑆11 for hologram #2.

Fig.5.10 and 5.11 show the measured and simulated 𝑆11 for two designed holograms
targeting the same object at the same position, respectively. From Fig. 5.10, it is
evident that the measured and simulated 𝑆11 show a similar trend in the paraxial area
for both the corner cube and the metallic patch. However, the discrepancy of the curves
becomes significant for objects located at the edge of the field of view. Similar results
can be observed from Fig. 5.11, with some exceptions. For example, the measured
and simulated 𝑆11 show a similar trend for the corner cube located on the right-down
side, while a significant mismatch is found for the metallic patch in the center area.
The similarities in the paraxial area indicate that the proposed imaging model is valid
under certain conditions. The simulated reflected signals, calculated by multiplying
the measurement matrix and the object’s reflectivity map, assume that all energy is
collected by the receiver. In the paraxial area, the corner cube reflects all energy
to the receiver, resulting in consistency between the measurements and simulations
for both holograms. Although the metallic patch in the center area does not reflect
all energy, most of it can still be received by the horn antenna, showcasing some
similarity. However, as the object moves closer to the edge of the field of view, part of
the energy is not reflected back to the antenna due to the large incident angle, resulting
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in significant variance between the simulation and measurement. Additionally, the
field distribution changes rapidly in adjacent pixels, so even minor mismatches in the
position or size of the measured and simulated targets in the paraxial area can cause
inconsistencies.

In conclusion, the proposed imaging system model demonstrates validity, with
consistent results between measurements and simulations in the paraxial area. However,
variations in energy reflection, especially at the edge of the field of view, and minor
mismatches in target position or size can lead to significant discrepancies. Moreover,
the diversity of measurements from different positions also indicates the potential
imaging capability of this system.

5.3.3 Experimental imaging

One of the goals of this thesis is to reconstruct images from real measurements.
However, the trained neural network discussed in Section 4.2 cannot be directly applied
to real measurements due to the domain shift in measurement matrix between the
simulated and real imaging systems [57]. Therefore, re-training the neural network
is essential for the imaging experiments. Utilizing limited measured data pairs for
training is not advisable due to the risk of over-fitting. As stated in Section 4.2.5, the
neural network trained on the simulated measurement matrix and EMNIST dataset
demonstrates generalization ability for some unseen targets. A method based on
the constructed measurement matrix is proposed and validated in this section. The
neural network will be trained with this constructed measurement matrix and an
additional dataset containing targets of different sizes and shapes. It will then be
tested on real measurement data shown in Fig. 5.12. It is evident that the position of
some targets can be reconstructed from the 1D measurements by the neural network,
which was completely trained on the synthetic dataset for both holograms. However,
inaccurate predictions still exist due to the domain shift between the simulated and
real measurement matrices, especially for some targets located at the edge of the field
of view. Overall, the neural network trained on the synthetic dataset cannot accurately
reconstruct both the shape and position of real targets from the real measurements.
However, some good reconstruction results indicate that the simulated measurement
matrix can partially represent the real physical process of the imaging system to some
extent.
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a) Reconstruction results from the hologram #1.

b) Reconstruction results from the hologram #2.

Figure 5.12: Reconstruction results from the real measurements.

65



6 Conclusions

6.1 Summary
This thesis proposes an end-to-end design paradigm for a sub-millimeter frequency-
diverse computational imaging system, which jointly optimizes a heavily-quantized
hologram as the encoder and a reconstruction network as the decoder. The approach
starts by building an imaging physics model with a dispersive hologram, based on the
Fourier-optics method, to map the reflectivity of an object to 1-D reflected frequency
response. This imaging model is then integrated into a deep learning framework to
optimize the profile of the dispersive hologram using neural networks in a data-driven
manner. Additionally, a differentiable quantization method is presented for hologram
design to reduce the mismatch between simulation and manufacturing.

The main research questions of this thesis were to explore 1) whether the end-to-end
design method improves the frequency diversity of the hologram in the 220-330 GHz
range, 2) whether the manufactured holograms with detailed structures can produce
the desired field distributions as shown in simulations, and 3) the correctness of the
proposed imaging physics model. A Pytorch-based Fourier-optics simulation codebase
was developed and used to optimize both hologram surface patterns and neural networks
with different design parameters. This codebase enables multi-wavelength parallel
simulation with GPU acceleration, significantly improving efficiency compared to the
original physical-optics simulation.

In the simulation, the effect of hologram design parameters, including minimal
detail size and the number of discrete levels, on frequency diversity, efficiency, and
reconstruction quality across the 220-330 GHz range was studied. Based on the
simulation results, end-to-end designed holograms demonstrate better performance
in frequency diversity and reconstruction quality compared to previous methods.
However, the efficiency of these holograms decreased due to significant diffraction
effects introduced by the more detailed structures. Finally, two hologram designs with
minimal detail sizes of 1×1 mm2 and 2×2 mm2 were selected for manufacturing using
Formlabs’ 3D printing machine.

To validate the research questions proposed in this thesis, a quasi-optical setup was
built to measure the electric field and reflected frequency response of both holograms
at 220-330 GHz. The frequency diversity analysis of the measured fields shows a better
performance of end-to-end designed holograms. However, different design paradigms
did not significantly improve the flatness of the singular value spectrum, indicating
a possible upper-bound limitation of phase modulation for frequency diversity. In
addition, the measured field patterns did not match the simulated patterns in the first
measurement. This discrepancy is explored and attributed to the non-planar phase of
the collimated incident wave. The designed holograms, with their detailed structures,
function as phase modulators and are sensitive to the phase of the incident wave. To
study how waves interact with manufactured holograms, considering the non-ideal
incident wave, the aperture fields with and without holograms were scanned and
analyzed. The sufficient similarities verify the accuracy of the hologram modeling.
Moreover, a scattering effect is observed from the hologram with a minimal size of
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1 mm due to its comparable size with the wavelength. Finally, the simulated and
measured reflected frequency responses are compared and some consistent results
indicate the partial validity of imaging physics modeling in the paraxial condition.
The imaging experiments also demonstrate that the neural network fully trained on the
synthetic dataset with the simulated measurement matrix cannot accurately predict
both the shape and position of targets from real measurements. However, some good
reconstruction results indicate that the simulated measurement matrix can partially
represent the real physical process of the imaging system to some extent.

6.2 Limitation and future work
The practical imaging performance of computational imaging systems is greatly
limited by the accuracy of the forward physics model and the reliability of the
inverse reconstruction algorithm. In this thesis, the imaging physics model does
not fully represent the imaging process of a realistic system. Consequently, the
optimized neural network cannot be directly used to reconstruct images from real
measurements. Additionally, due to the simplification of our imaging model, the
end-to-end optimization method may not identify the most optimal hologram pattern
for the corresponding neural network. In the future, more accurate imaging models and
the uncertainty of the imaging process should be explored to better match simulated
and measured results and enhance the potential of end-to-end design.
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